Eliminating variables in Boolean equation systems

Bjørn Møller Greve ${ }^{1,2}$ Håvard Raddum ${ }^{2}$ Gunnar Fløystad ${ }^{3}$ ${ }^{2}$ yvind Ytrehus ${ }^{2}$
${ }^{1}$ Norwegian Defence Research Establishment
${ }^{2}$ Simula@UiB
${ }^{3}$ Dept. of Mathematics, UiB

July 5, 2017

Boolean functions

- $B[1, n]=\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{i}^{2}+x_{i} \mid i=1, \ldots, n\right)$
- Set of Boolean equations $F=\left\{f_{1}, \ldots, f_{s}\right\}$ in $B[1, n] \leftrightarrow F$ generate an ideal $I(F)=\left(f_{1}, \ldots, f_{s}\right)$, with zero set $Z(f(m))-\left\{a \in \mathbb{T i n n}_{2} f^{\prime}(a)\right.$ - a for every $\left.f \in T(m)\right\}$
- Objective: Given $I(F) \subset B[1, n]$ we want to find $I^{\prime}(F) \subset B[2, n]$ s.th $Z\left(I^{\prime}(F)\right)=\pi_{1}(Z(I(F))) \leftrightarrow$ Compute $J \subset I^{\prime}(F)$ as large as possible give computational restrictions.
- In general: We can eliminate more variables in the same fashion $\rightarrow k$ 'th elimination ideal $I(F) \cap B[k+1, n]$.
- Without loss of generality we eliminate variables in the order $x_{1}, x_{2}, \ldots, x_{n}$.

Boolean functions

- $B[1, n]=\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{i}^{2}+x_{i} \mid i=1, \ldots, n\right)$
- Set of Boolean equations $F=\left\{f_{1}, \ldots, f_{s}\right\}$ in $B[1, n] \leftrightarrow F$ generate an ideal $I(F)=\left(f_{1}, \ldots, f_{s}\right)$, with zero set $Z(I(F))=\left\{\mathbf{a} \in \mathbb{F}_{2}^{n} \mid f(\mathbf{a})=0\right.$ for ever $\left.f \in I(F)\right\}$
- O $Z(1(F))=\pi_{1}(Z(I(F))) \leftrightarrow$ Compute $J \subset I^{\prime}(F)$ as large as possible given computational restrictions.
- In general: We can eliminate more variables in the same fashion $\rightarrow k$ 'th elimination ideal $I(F) \cap B[k+1, n]$.
- Without loss of generality we eliminate variables in the order $x_{1}, x_{2}, \ldots, x_{n}$.

Boolean functions

- $B[1, n]=\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{i}^{2}+x_{i} \mid i=1, \ldots, n\right)$
- Set of Boolean equations $F=\left\{f_{1}, \ldots, f_{s}\right\}$ in $B[1, n] \leftrightarrow F$ generate an ideal $I(F)=\left(f_{1}, \ldots, f_{s}\right)$, with zero set $Z(I(F))=\left\{\mathbf{a} \in \mathbb{F}_{2}^{n} \mid f(\mathbf{a})=0\right.$ for every $\left.f \in I(F)\right\}$.
\qquad
- In general: We can eliminate more variables in the same fashion $\rightarrow k$ 'th elimination ideal $I(F) \cap B[k+1, n]$
- Without loss of generality we eliminate variables in the order $x_{1}, x_{2}, \ldots, x_{n}$.

Boolean functions

- $B[1, n]=\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{i}^{2}+x_{i} \mid i=1, \ldots, n\right)$
- Set of Boolean equations $F=\left\{f_{1}, \ldots, f_{s}\right\}$ in $B[1, n] \leftrightarrow F$ generate an ideal $I(F)=\left(f_{1}, \ldots, f_{s}\right)$, with zero set $Z(I(F))=\left\{\mathbf{a} \in \mathbb{F}_{2}^{n} \mid f(\mathbf{a})=0\right.$ for every $\left.f \in I(F)\right\}$.

Elimination of variables from Boolean functions

- Objective: Given $I(F) \subset B[1, n]$ we want to find $I^{\prime}(F) \subset B[2, n]$ s.th $Z\left(I^{\prime}(F)\right)=\pi_{1}(Z(I(F))) \leftrightarrow$ Compute $J \subset I^{\prime}(F)$ as large as possible given computational restrictions.

Boolean functions

- $B[1, n]=\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{i}^{2}+x_{i} \mid i=1, \ldots, n\right)$
- Set of Boolean equations $F=\left\{f_{1}, \ldots, f_{s}\right\}$ in $B[1, n] \leftrightarrow F$ generate an ideal $I(F)=\left(f_{1}, \ldots, f_{s}\right)$, with zero set $Z(I(F))=\left\{\mathbf{a} \in \mathbb{F}_{2}^{n} \mid f(\mathbf{a})=0\right.$ for every $\left.f \in I(F)\right\}$.

Elimination of variables from Boolean functions

- Objective: Given $I(F) \subset B[1, n]$ we want to find $I^{\prime}(F) \subset B[2, n]$ s.th $Z\left(I^{\prime}(F)\right)=\pi_{1}(Z(I(F))) \leftrightarrow$ Compute $J \subset I^{\prime}(F)$ as large as possible given computational restrictions.
- In general: We can eliminate more variables in the same fashion $\rightarrow k$ 'th elimination ideal $I(F) \cap B[k+1, n]$.

Boolean functions

- $B[1, n]=\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{i}^{2}+x_{i} \mid i=1, \ldots, n\right)$
- Set of Boolean equations $F=\left\{f_{1}, \ldots, f_{s}\right\}$ in $B[1, n] \leftrightarrow F$ generate an ideal $I(F)=\left(f_{1}, \ldots, f_{s}\right)$, with zero set $Z(I(F))=\left\{\mathbf{a} \in \mathbb{F}_{2}^{n} \mid f(\mathbf{a})=0\right.$ for every $\left.f \in I(F)\right\}$.

Elimination of variables from Boolean functions

- Objective: Given $I(F) \subset B[1, n]$ we want to find $I^{\prime}(F) \subset B[2, n]$ s.th $Z\left(I^{\prime}(F)\right)=\pi_{1}(Z(I(F))) \leftrightarrow$ Compute $J \subset I^{\prime}(F)$ as large as possible given computational restrictions.
- In general: We can eliminate more variables in the same fashion $\rightarrow k$ 'th elimination ideal $I(F) \cap B[k+1, n]$.
- Without loss of generality we eliminate variables in the order $x_{1}, x_{2}, \ldots, x_{n}$.

The Elimination Theorem

Theorem

If $G(F)$ is a Gröbner basis for the ideal $I(F)$ with respect to the (lex) order $x_{1}>x_{2}>\cdots>x_{n}$, then

$$
G_{k}(F)=G(F) \cap B[k+1, n]
$$

is a Gröbner basis of the k 'th elimination ideal $I^{k}(F)$.

[^0]
The Elimination Theorem

Theorem

If $G(F)$ is a Gröbner basis for the ideal $I(F)$ with respect to the (lex) order $x_{1}>x_{2}>\cdots>x_{n}$, then

$$
G_{k}(F)=G(F) \cap B[k+1, n]
$$

is a Gröbner basis of the k 'th elimination ideal $I^{k}(F)$.

+ Computes the full elimination ideal
+ Preserves all "exact" solutions of the original system
- We have to compute the full Gröbner basis before elimination.

2. Fliminates one monomial at the time
3. - Gröbner bases are hard to compute \rightarrow high complexity (All possible degrees)

The Elimination Theorem

Theorem

If $G(F)$ is a Gröbner basis for the ideal $I(F)$ with respect to the (lex) order $x_{1}>x_{2}>\cdots>x_{n}$, then

$$
G_{k}(F)=G(F) \cap B[k+1, n]
$$

is a Gröbner basis of the k 'th elimination ideal $I^{k}(F)$.

+ Computes the full elimination ideal
+ Preserves all "exact" solutions of the original system

1. - We have to compute the full Gröbner basis before elimination.

The Elimination Theorem

Theorem

If $G(F)$ is a Gröbner basis for the ideal $I(F)$ with respect to the (lex) order $x_{1}>x_{2}>\cdots>x_{n}$, then

$$
G_{k}(F)=G(F) \cap B[k+1, n]
$$

is a Gröbner basis of the k 'th elimination ideal $I^{k}(F)$.

+ Computes the full elimination ideal
+ Preserves all "exact" solutions of the original system

1. - We have to compute the full Gröbner basis before elimination.
2. - Eliminates one monomial at the time.

The Elimination Theorem

Theorem

If $G(F)$ is a Gröbner basis for the ideal $I(F)$ with respect to the (lex) order $x_{1}>x_{2}>\cdots>x_{n}$, then

$$
G_{k}(F)=G(F) \cap B[k+1, n]
$$

is a Gröbner basis of the k 'th elimination ideal $I^{k}(F)$.

+ Computes the full elimination ideal
+ Preserves all "exact" solutions of the original system

1. - We have to compute the full Gröbner basis before elimination.
2. - Eliminates one monomial at the time.
3. - Gröbner bases are hard to compute \rightarrow high complexity (All possible degrees)

Symmetric cryptography

- Defined over the binary field $G F(2) \rightarrow$ block encryption algorithms $E_{K}(P)=C$ takes a fixed length plaintext P and a secret key K as inputs, and produces a ciphertext C.
- Divides the data into blocks of fixed size, and then encrypting each block separately. The encryption usually consists of iterating a round function, consisting of suitable linear and nonlinear transformations
- A known plaintext attack: Assume both P and C are known. Objective: Extract the secret key K.

[^1]- The bits of the cipher states during encryption can always be described as polynomials in the user-selected key!

Symmetric cryptography

- Defined over the binary field $G F(2) \rightarrow$ block encryption algorithms $E_{K}(P)=C$ takes a fixed length plaintext P and a secret key K as inputs, and produces a ciphertext C.

Symmetric cryptography

- Defined over the binary field $G F(2) \rightarrow$ block encryption algorithms $E_{K}(P)=C$ takes a fixed length plaintext P and a secret key K as inputs, and produces a ciphertext C.
- Divides the data into blocks of fixed size, and then encrypting each block separately. The encryption usually consists of iterating a round function, consisting of suitable linear and nonlinear transformations

Symmetric cryptography

- Defined over the binary field $G F(2) \rightarrow$ block encryption algorithms $E_{K}(P)=C$ takes a fixed length plaintext P and a secret key K as inputs, and produces a ciphertext C.
- Divides the data into blocks of fixed size, and then encrypting each block separately. The encryption usually consists of iterating a round function, consisting of suitable linear and nonlinear transformations
- A known plaintext attack: Assume both P and C are known. Objective: Extract the secret key K.

Boolean functions in cryptography

Symmetric cryptography

- Defined over the binary field $G F(2) \rightarrow$ block encryption algorithms $E_{K}(P)=C$ takes a fixed length plaintext P and a secret key K as inputs, and produces a ciphertext C.
- Divides the data into blocks of fixed size, and then encrypting each block separately. The encryption usually consists of iterating a round function, consisting of suitable linear and nonlinear transformations
- A known plaintext attack: Assume both P and C are known. Objective: Extract the secret key K.

Boolean functions in cryptography

Ciphers defined over $G F(2)$ can always be described as a system of Boolean equations of degree $2 \rightarrow$ introduce enough auxiliary variables \rightarrow Solving this system of equations w.r.t K : Algebraic cryptanalysis.

Symmetric cryptography

- Defined over the binary field $G F(2) \rightarrow$ block encryption algorithms $E_{K}(P)=C$ takes a fixed length plaintext P and a secret key K as inputs, and produces a ciphertext C.
- Divides the data into blocks of fixed size, and then encrypting each block separately. The encryption usually consists of iterating a round function, consisting of suitable linear and nonlinear transformations
- A known plaintext attack: Assume both P and C are known. Objective: Extract the secret key K.

Boolean functions in cryptography

Ciphers defined over $G F(2)$ can always be described as a system of Boolean equations of degree $2 \rightarrow$ introduce enough auxiliary variables \rightarrow Solving this system of equations w.r.t K : Algebraic cryptanalysis.

- The bits of the cipher states during encryption can always be described as polynomials in the user-selected key!

Symmetric cryptography

- Defined over the binary field $G F(2) \rightarrow$ block encryption algorithms $E_{K}(P)=C$ takes a fixed length plaintext P and a secret key K as inputs, and produces a ciphertext C.
- Divides the data into blocks of fixed size, and then encrypting each block separately. The encryption usually consists of iterating a round function, consisting of suitable linear and nonlinear transformations
- A known plaintext attack: Assume both P and C are known. Objective: Extract the secret key K.

Boolean functions in cryptography

Ciphers defined over $G F(2)$ can always be described as a system of Boolean equations of degree $2 \rightarrow$ introduce enough auxiliary variables \rightarrow Solving this system of equations w.r.t K : Algebraic cryptanalysis.

- The bits of the cipher states during encryption can always be described as polynomials in the user-selected key!
- Over multiple rounds in a block cipher algorithm, the degree of the polynomials in only user-selected key bits grow fast, making the equations hard to solve.

The block cipher problem

If we start with a description of a block cipher as a system of equations of degree 2 using "many" variables, is it possible to efficiently eliminate all the auxiliary variables, such that we end up with some low-degree equations in which the only variables are the bits of K ?

> We are guaranteed that the correct key K is one solution to this system, but restricting the degree means that we get many false keys as well.

1. The general method: Enumerating the possible solutions to the final system and "lifting" these through the intermediate systems to filter out false solutions.
2. The block cipher method: Repeating the process of variable elimination using other known plaintext/ciphertext pairs and build up a low-degree system of equations in only user-selected key variables that has K as a unique solution.
3. Low degree system \leftrightarrow solve by re-linearization if we have enough polynomials \leftrightarrow repeat elimination until by brute force is possible.

The block cipher problem

If we start with a description of a block cipher as a system of equations of degree 2 using "many" variables, is it possible to efficiently eliminate all the auxiliary variables, such that we end up with some low-degree equations in which the only variables are the bits of K ?
2. The block cipher method: Repeating the process of variable elimination using other known plaintext/ciphertext pairs and build up a low-degree system of equations in only user-selected key variables that has K as a unique solution
3. Low degree system \leftrightarrow solve by re-linearization if we have enough polynomials \leftrightarrow repeat elimination until by brute force is possible.

The block cipher problem

If we start with a description of a block cipher as a system of equations of degree 2 using "many" variables, is it possible to efficiently eliminate all the auxiliary variables, such that we end up with some low-degree equations in which the only variables are the bits of K ?

NB!

We are guaranteed that the correct key K is one solution to this system, but restricting the degree means that we get many false keys as well.
2. The block cipher method: Repeating the process of variable elimination using other known plaintext/ciphertext pairs and build up a low-degree system of equations in only user-selected key variables that has K as a unique solution.
3. Low degree system \leftrightarrow solve by re-linearization if we have enough polynomials \leftrightarrow repeat elimination until by brute force is possible.

The block cipher problem

If we start with a description of a block cipher as a system of equations of degree 2 using "many" variables, is it possible to efficiently eliminate all the auxiliary variables, such that we end up with some low-degree equations in which the only variables are the bits of K ?

NB!

We are guaranteed that the correct key K is one solution to this system, but restricting the degree means that we get many false keys as well.

How to solve equations after elimination

1. The general method: Enumerating the possible solutions to the final system and "lifting" these through the intermediate systems to filter out false solutions.

The block cipher problem

If we start with a description of a block cipher as a system of equations of degree 2 using "many" variables, is it possible to efficiently eliminate all the auxiliary variables, such that we end up with some low-degree equations in which the only variables are the bits of K ?

NB!

We are guaranteed that the correct key K is one solution to this system, but restricting the degree means that we get many false keys as well.

How to solve equations after elimination

1. The general method: Enumerating the possible solutions to the final system and "lifting" these through the intermediate systems to filter out false solutions.
2. The block cipher method: Repeating the process of variable elimination using other known plaintext/ciphertext pairs and build up a low-degree system of equations in only user-selected key variables that has K as a unique solution.

The block cipher problem

If we start with a description of a block cipher as a system of equations of degree 2 using "many" variables, is it possible to efficiently eliminate all the auxiliary variables, such that we end up with some low-degree equations in which the only variables are the bits of K ?

NB!

We are guaranteed that the correct key K is one solution to this system, but restricting the degree means that we get many false keys as well.

How to solve equations after elimination

1. The general method: Enumerating the possible solutions to the final system and "lifting" these through the intermediate systems to filter out false solutions.
2. The block cipher method: Repeating the process of variable elimination using other known plaintext/ciphertext pairs and build up a low-degree system of equations in only user-selected key variables that has K as a unique solution.
3. Low degree system \leftrightarrow solve by re-linearization if we have enough polynomials \leftrightarrow repeat elimination until by brute force is possible.

Our contribution

- Trade-off: The ability to control the degree vs the ability to stay close to the elimination ideal $I \cap B[k+1, n]$.
- Minimize complexity \leftrightarrow Only consider polynomials of degree $\leq 3 \leftrightarrow$ $F=\left\{f_{1}, \ldots, f_{c}\right\}, G=\left\{g_{1}, \ldots, g_{q}\right\}, f_{i}$'s have degree 3 and the g_{i} 's degrees 2 .
- Objective: Find as many polynomials in the ideal $I(F, G)$ of degree ≤ 3 as we can \leftrightarrow Try to produce degree 3 or less in only key variables when applied to block ciphers.
- Eliminating variables while keeping degree $\leq 3 \rightarrow$ introduce false solutions.
- $L=\left\{1, x_{1}, \ldots, x_{n}\right\} \rightarrow\langle L\rangle \rightarrow$ vector space spanned by the Boolean polynomials.
- Eliminate variables from the vector space $\langle F \cup L G\rangle \leftrightarrow$ $L G=\{l g$ where $l \in L$ and $g \in G\}$.

Our contribution

- Trade-off: The ability to control the degree vs the ability to stay close to the elimination ideal $I \cap B[k+1, n]$.

```
- Minimize complexity \(\leftrightarrow\) Only consider polynomials of degree
```



```
- Objective: Find as many polynomials in the ideal \(I(F, G)\) of degree \(\leq 3\) as we can \(\leftrightarrow\) Try to produce degree 3 or less in only key variables when applied to block ciphers.
```


Our contribution

- Trade-off: The ability to control the degree vs the ability to stay close to the elimination ideal $I \cap B[k+1, n]$.
- Minimize complexity \leftrightarrow Only consider polynomials of degree $\leq 3 \leftrightarrow$ $F=\left\{f_{1}, \ldots, f_{c}\right\}, G=\left\{g_{1}, \ldots, g_{q}\right\}, f_{i}$'s have degree 3 and the g_{i} 's degrees 2 .

Our contribution

- Trade-off: The ability to control the degree vs the ability to stay close to the elimination ideal $I \cap B[k+1, n]$.
- Minimize complexity \leftrightarrow Only consider polynomials of degree $\leq 3 \leftrightarrow$ $F=\left\{f_{1}, \ldots, f_{c}\right\}, G=\left\{g_{1}, \ldots, g_{q}\right\}, f_{i}$'s have degree 3 and the g_{i} 's degrees 2 .
- Objective: Find as many polynomials in the ideal $I(F, G)$ of degree ≤ 3 as we can \leftrightarrow Try to produce degree 3 or less in only key variables when applied to block ciphers.

Our contribution

- Trade-off: The ability to control the degree vs the ability to stay close to the elimination ideal $I \cap B[k+1, n]$.
- Minimize complexity \leftrightarrow Only consider polynomials of degree $\leq 3 \leftrightarrow$ $F=\left\{f_{1}, \ldots, f_{c}\right\}, G=\left\{g_{1}, \ldots, g_{q}\right\}, f_{i}$'s have degree 3 and the g_{i} 's degrees 2 .
- Objective: Find as many polynomials in the ideal $I(F, G)$ of degree ≤ 3 as we can \leftrightarrow Try to produce degree 3 or less in only key variables when applied to block ciphers.
- Eliminating variables while keeping degree $\leq 3 \rightarrow$ introduce false solutions.

Our contribution

- Trade-off: The ability to control the degree vs the ability to stay close to the elimination ideal $I \cap B[k+1, n]$.
- Minimize complexity \leftrightarrow Only consider polynomials of degree $\leq 3 \leftrightarrow$ $F=\left\{f_{1}, \ldots, f_{c}\right\}, G=\left\{g_{1}, \ldots, g_{q}\right\}, f_{i}$'s have degree 3 and the g_{i} 's degrees 2 .
- Objective: Find as many polynomials in the ideal $I(F, G)$ of degree ≤ 3 as we can \leftrightarrow Try to produce degree 3 or less in only key variables when applied to block ciphers.
- Eliminating variables while keeping degree $\leq 3 \rightarrow$ introduce false solutions.
- $L=\left\{1, x_{1}, \ldots, x_{n}\right\} \rightarrow\langle L\rangle \rightarrow$ vector space spanned by the Boolean polynomials.

Our contribution

- Trade-off: The ability to control the degree vs the ability to stay close to the elimination ideal $I \cap B[k+1, n]$.
- Minimize complexity \leftrightarrow Only consider polynomials of degree $\leq 3 \leftrightarrow$ $F=\left\{f_{1}, \ldots, f_{c}\right\}, G=\left\{g_{1}, \ldots, g_{q}\right\}, f_{i}$'s have degree 3 and the g_{i} 's degrees 2 .
- Objective: Find as many polynomials in the ideal $I(F, G)$ of degree ≤ 3 as we can \leftrightarrow Try to produce degree 3 or less in only key variables when applied to block ciphers.
- Eliminating variables while keeping degree $\leq 3 \rightarrow$ introduce false solutions.
- $L=\left\{1, x_{1}, \ldots, x_{n}\right\} \rightarrow\langle L\rangle \rightarrow$ vector space spanned by the Boolean polynomials.
- Eliminate variables from the vector space $\langle F \cup L G\rangle \leftrightarrow$ $L G=\{l g$ where $l \in L$ and $g \in G\}$.

The monomial orders

Gauss eliminate monomials containing x_{1} from the sets F and G producing $\left\langle F_{x_{1}}, G_{x_{1}}\right\rangle$ and $\left\langle F_{\overline{x_{1}}}, G_{\overline{x_{1}}}\right\rangle=\langle F, G\rangle \cap B[2, n]$.

- $\langle F \cup L G\rangle$ may contain more quadratic polynomials than just G.
- Produce a larger set of quadratic polynomials $G^{(2)}$ by Gaussian elimination on degree 3 monomials in order to try to produce some polynomials of degree 2.
- Eliminate particular monomials containing x_{1} from F using G as basis.
- A polynomial $f \in B$ is said to be in normal form $f^{\text {Norm }}$ with respect to C, if no monomial in f is divisible by the leading term of any polynomial in $G \rightarrow$ Achieve $f^{\text {Norm }}$ by successively subtracting multiples of the polynomials in G.
- The effect of this procedure is that there is a rather large set of monomials containing x_{1} that can not appear in the cubic polynomials output at the end.

The monomial orders

A. Monomials containing x_{1} are largest: Split variable

Gauss eliminate monomials containing x_{1} from the sets F and G producing $\left\langle F_{x_{1}}, G_{x_{1}}\right\rangle$ and $\left\langle F_{\overline{x_{1}}}, G_{\overline{x_{1}}}\right\rangle=\langle F, G\rangle \cap B[2, n]$.

- $\langle F \cup L G\rangle$ may contain more quadratic polynomials than just G.
- Produce a larger set of quadratic polynomials $G^{(2)}$ by Gaussian elimination on degree 3 monomials in order to try to produce some polynomials of degree 2.
- Eliminate particular monomials containing x_{1} from F using G as basis.
- A polynomial $f \in B$ is said to be in normal form $f^{\text {Norm }}$ with respect to C, if no monomial in f is divisible by the leading term of any polynomial in $G \rightarrow$ Achieve $f^{\text {Norm }}$ by successively subtracting multiples of the polynomials in G.
- The effect of this procedure is that there is a rather large set of monomials containing x_{1} that can not appear in the cubic polynomials output at the end.

The monomial orders

A. Monomials containing x_{1} are largest: Split variable

Gauss eliminate monomials containing x_{1} from the sets F and G producing $\left\langle F_{x_{1}}, G_{x_{1}}\right\rangle$ and $\left\langle F_{\overline{x_{1}}}, G_{\overline{x_{1}}}\right\rangle=\langle F, G\rangle \cap B[2, n]$.
B. Monomials of degree 3 are largest: Split deg $2 / 3$
\square

- Eliminate particular monomials containing x_{1} from F using G as basis.
- A nolynomial $f \in B$ is said to be in normal form $f^{\text {Norm }}$ with resnect to G, if no monomial in f is divisible by the leading term of any polynomial in $G \rightarrow$ Achieve $f^{\text {Norm }}$ by successively subtracting multiples of the polynomials in G.
- The effect of this procedure is that there is a rather large set of monomials containing x_{1} that can not appear in the cubic polynomials output at the end.

The monomial orders

A. Monomials containing x_{1} are largest: Split variable

Gauss eliminate monomials containing x_{1} from the sets F and G producing $\left\langle F_{x_{1}}, G_{x_{1}}\right\rangle$ and $\left\langle F_{\overline{x_{1}}}, G_{\overline{x_{1}}}\right\rangle=\langle F, G\rangle \cap B[2, n]$.
B. Monomials of degree 3 are largest: Split deg $2 / 3$

- $\langle F \cup L G\rangle$ may contain more quadratic polynomials than just G.
degree 3 monomials in order to try to produce some polynomials of degree 2.
- Eliminate particular monomials containing x_{1} from F using G as basis.
- A polynomial $f \in B$ is said to be in normal form $f^{\text {Norm }}$ with respect to C, if no monomial in f is divisible by the leading term of any polynomial in $G \rightarrow$ Achieve $f^{\text {Norm }}$ by successively subtracting multiples of the polynomials in G.
- The effect of this procedure is that there is a rather large set of monomials containing x_{1} that can not appear in the cubic polynomials output at the end.

The monomial orders

A. Monomials containing x_{1} are largest: Split variable

Gauss eliminate monomials containing x_{1} from the sets F and G producing $\left\langle F_{x_{1}}, G_{x_{1}}\right\rangle$ and $\left\langle F_{\overline{x_{1}}}, G_{\overline{x_{1}}}\right\rangle=\langle F, G\rangle \cap B[2, n]$.
B. Monomials of degree 3 are largest: Split deg $2 / 3$

- $\langle F \cup L G\rangle$ may contain more quadratic polynomials than just G.
- Produce a larger set of quadratic polynomials $G^{(2)}$ by Gaussian elimination on degree 3 monomials in order to try to produce some polynomials of degree 2 .
- Eliminate particular monomials containing x_{1} from F using G as basis.
- A polynomial $f \in B$ is said to be in normal form $f^{\text {Norm }}$ with respect to G, if no monomial in f is divisible by the leading term of any polynomial in $G \rightarrow$ Achieve $f^{\text {Norm }}$ by successively subtracting multiples of the polynomials in G.
- The effect of this procedure is that there is a rather large set of monomials containing x_{1} that can not appear in the cubic polynomials output at the end.

The monomial orders

A. Monomials containing x_{1} are largest: Split variable

Gauss eliminate monomials containing x_{1} from the sets F and G producing $\left\langle F_{x_{1}}, G_{x_{1}}\right\rangle$ and $\left\langle F_{\overline{x_{1}}}, G_{\overline{x_{1}}}\right\rangle=\langle F, G\rangle \cap B[2, n]$.
B. Monomials of degree 3 are largest: Split deg $2 / 3$

- $\langle F \cup L G\rangle$ may contain more quadratic polynomials than just G.
- Produce a larger set of quadratic polynomials $G^{(2)}$ by Gaussian elimination on degree 3 monomials in order to try to produce some polynomials of degree 2 .

3-normal forms: Normalizing cubics with respect to quadratics

The monomial orders

A. Monomials containing x_{1} are largest: Split variable

Gauss eliminate monomials containing x_{1} from the sets F and G producing $\left\langle F_{x_{1}}, G_{x_{1}}\right\rangle$ and $\left\langle F_{\overline{x_{1}}}, G_{\overline{x_{1}}}\right\rangle=\langle F, G\rangle \cap B[2, n]$.
B. Monomials of degree 3 are largest: Split deg $2 / 3$

- $\langle F \cup L G\rangle$ may contain more quadratic polynomials than just G.
- Produce a larger set of quadratic polynomials $G^{(2)}$ by Gaussian elimination on degree 3 monomials in order to try to produce some polynomials of degree 2 .

3-normal forms: Normalizing cubics with respect to quadratics

- Eliminate particular monomials containing x_{1} from F using G as basis.
\square
\qquad

The monomial orders

A. Monomials containing x_{1} are largest: Split variable

Gauss eliminate monomials containing x_{1} from the sets F and G producing $\left\langle F_{x_{1}}, G_{x_{1}}\right\rangle$ and $\left\langle F_{\overline{x_{1}}}, G_{\overline{x_{1}}}\right\rangle=\langle F, G\rangle \cap B[2, n]$.
B. Monomials of degree 3 are largest: Split deg $2 / 3$

- $\langle F \cup L G\rangle$ may contain more quadratic polynomials than just G.
- Produce a larger set of quadratic polynomials $G^{(2)}$ by Gaussian elimination on degree 3 monomials in order to try to produce some polynomials of degree 2.

3-normal forms: Normalizing cubics with respect to quadratics

- Eliminate particular monomials containing x_{1} from F using G as basis.
- A polynomial $f \in B$ is said to be in normal form $f^{\text {Norm }}$ with respect to G, if no monomial in f is divisible by the leading term of any polynomial in $G \rightarrow$ Achieve $f^{\text {Norm }}$ by successively subtracting multiples of the polynomials in G.

The monomial orders

A. Monomials containing x_{1} are largest: Split variable

Gauss eliminate monomials containing x_{1} from the sets F and G producing $\left\langle F_{x_{1}}, G_{x_{1}}\right\rangle$ and $\left\langle F_{\overline{x_{1}}}, G_{\overline{x_{1}}}\right\rangle=\langle F, G\rangle \cap B[2, n]$.
B. Monomials of degree 3 are largest: Split deg $2 / 3$

- $\langle F \cup L G\rangle$ may contain more quadratic polynomials than just G.
- Produce a larger set of quadratic polynomials $G^{(2)}$ by Gaussian elimination on degree 3 monomials in order to try to produce some polynomials of degree 2.

3-normal forms: Normalizing cubics with respect to quadratics

- Eliminate particular monomials containing x_{1} from F using G as basis.
- A polynomial $f \in B$ is said to be in normal form $f^{\text {Norm }}$ with respect to G, if no monomial in f is divisible by the leading term of any polynomial in $G \rightarrow$ Achieve $f^{\text {Norm }}$ by successively subtracting multiples of the polynomials in G.
- The effect of this procedure is that there is a rather large set of monomials containing x_{1} that can not appear in the cubic polynomials output at the end.

What is the alternative to Gröbner bases?

- Resultants: Eliminate one variable from all monomials containing the targeted variable at the time.
- Let $f=a_{\mathrm{n}} x_{1}+a_{1}$ and $g=b_{0} x_{1}+b_{1}$ be two polynomials in B, where the a_{j} and b_{j} are in $B[2, n]$. If f and g are quadratic, then a_{0} and b_{0} will be linear, a_{1} and b_{1} will (in general) be quadratic.
- The 2×2 Sylvester matrix of f anc g with respect to x_{1}
\qquad
- The resultant of f and g with respect to x_{1} is a polynomial in $B[2, n]$: $\operatorname{Res}\left(f, g, x_{1}\right)=\operatorname{det}\left(\operatorname{Syl}\left(f, g, x_{1}\right)\right)=a_{0} b_{1}+a_{1} b_{0}=b_{0} f+a_{0} g$. Also $\operatorname{Res}\left(f, g, x_{1}\right) \subset I^{\prime}=(f, g) \cap B[2, n]$.

[^2]
What is the alternative to Gröbner bases?

- Resultants: Eliminate one variable from all monomials containing the targeted variable at the time.

[^3]
What is the alternative to Gröbner bases?

- Resultants: Eliminate one variable from all monomials containing the targeted variable at the time.
- Let $f=a_{0} x_{1}+a_{1}$ and $g=b_{0} x_{1}+b_{1}$ be two polynomials in B, where the a_{j} and b_{j} are in $B[2, n]$. If f and g are quadratic, then a_{0} and b_{0} will be linear, a_{1} and b_{1} will (in general) be quadratic.

What is the alternative to Gröbner bases?

- Resultants: Eliminate one variable from all monomials containing the targeted variable at the time.
- Let $f=a_{0} x_{1}+a_{1}$ and $g=b_{0} x_{1}+b_{1}$ be two polynomials in B, where the a_{j} and b_{j} are in $B[2, n]$. If f and g are quadratic, then a_{0} and b_{0} will be linear, a_{1} and b_{1} will (in general) be quadratic.
- The 2×2 Sylvester matrix of f and g with respect to x_{1}

$$
\operatorname{Syl}\left(f, g, x_{1}\right)=\left(\begin{array}{ll}
a_{0} & b_{0} \\
a_{1} & b_{1}
\end{array}\right)
$$

Good news
2×2 determinants are easy to compute, and cubic polynomials can be handled by a
computer. Also the size of n we encounter in cryptanalysis of block ciphers are within

What is the alternative to Gröbner bases?

- Resultants: Eliminate one variable from all monomials containing the targeted variable at the time.
- Let $f=a_{0} x_{1}+a_{1}$ and $g=b_{0} x_{1}+b_{1}$ be two polynomials in B, where the a_{j} and b_{j} are in $B[2, n]$. If f and g are quadratic, then a_{0} and b_{0} will be linear, a_{1} and b_{1} will (in general) be quadratic.
- The 2×2 Sylvester matrix of f and g with respect to x_{1}

$$
\operatorname{Syl}\left(f, g, x_{1}\right)=\left(\begin{array}{ll}
a_{0} & b_{0} \\
a_{1} & b_{1}
\end{array}\right)
$$

- The resultant of f and g with respect to x_{1} is a polynomial in $B[2, n]$: $\operatorname{Res}\left(f, g, x_{1}\right)=\operatorname{det}\left(\operatorname{Syl}\left(f, g, x_{1}\right)\right)=a_{0} b_{1}+a_{1} b_{0}=b_{0} f+a_{0} g$. Also $\operatorname{Res}\left(f, g, x_{1}\right) \subset I^{\prime}=(f, g) \cap B[2, n]$.

Good news

2×2 determinants are easy to compute, and cubic polynomials can be handled by a computer. Also the size of n we encounter in cryptanalysis of block ciphers are within tolerances.

Coefficient constraints and Resultant ideals

For $I(F)=\left(f_{1}, \ldots, f_{s}\right)$ where each f_{i} written as $f_{i}=a_{i} x_{1}+b_{i}$:

- $\operatorname{Res}_{2}(F)=\left(\operatorname{Res}\left(f_{i}, f_{j} ; x_{1}\right) \mid 1 \leq i<j \leq s\right)$.
- $\mathrm{Co}_{2}(F)=\left(b_{1}\left(a_{1}+1\right), b_{2}\left(a_{2}+1\right), \ldots, b_{s}\left(a_{s}+1\right)\right)$.

\square

Coefficient constraints and Resultant ideals

For $I(F)=\left(f_{1}, \ldots, f_{s}\right)$ where each f_{i} written as $f_{i}=a_{i} x_{1}+b_{i}$:

- $\operatorname{Res}_{2}(F)=\left(\operatorname{Res}\left(f_{i}, f_{j} ; x_{1}\right) \mid 1 \leq i<j \leq s\right)$.
- $\mathrm{Co}_{2}(F)=\left(b_{1}\left(a_{1}+1\right), b_{2}\left(a_{2}+1\right), \ldots, b_{s}\left(a_{s}+1\right)\right)$.

Theorem

Let $F=\left\{f_{1}, \ldots, f_{s}\right\}$ be a set of Boolean polynomials in $B[1, n]$. Then

$$
I(F) \cap B[2, n]=\operatorname{Res}_{2}(F)+C o_{2}(F)
$$

Note: IF f_{i} have degree $d \leftrightarrow \operatorname{deg}\left(\operatorname{Res}_{2}(F)+\operatorname{Co}_{2}(F)\right)=2 d-1$.

The LG-elim algorithm

- Replace F with FUL • G.
- Gauss eliminate w.r.t degree to produce F^{2}, F^{3} from F.
- Split F^{2} and F^{3} into $F_{x 1}^{2}, F_{x 1}^{3}, F_{x_{1}}^{2} F_{\overline{x 1}}^{3}$ by Gaussian elimination on monomials containing x_{1}.
- Return $F_{\overline{x_{1}}}^{2} F_{x_{1}}^{3}$.
- Repeat for F_{j} and G_{j} in smaller and smaller Boolean rings $B[j, m]$.

The LG-elim algorithm

- Replace F with $\mathrm{F} \cup L \cdot G$.
- Gauss eliminate w.r.t degree to produce F^{2}, F^{3} from F.
- Split F^{2} and F^{3} into $F_{x_{1}}^{2}, F_{x_{1}}^{3}, F_{x_{1}}^{2} F \frac{3}{x_{1}}$ by Gaussian elimination on monomials containing
- Return $F_{\frac{2}{x 1}}^{2} F_{\overline{3}}^{3}$. - Repeat for F_{j} and G_{j} in smaller and smaller Boolean rings $B[j, n]$.

The LG-elim algorithm

- Replace F with $\mathrm{F} \cup L \cdot G$.
- Gauss eliminate w.r.t degree to produce F^{2}, F^{3} from F.
- Split F^{2} and F^{3} into $F_{x_{1}}^{2}, F_{x_{1}}^{3}, F_{x_{1}}^{2} F_{\bar{x}}^{3}$ by Gaussian elimination on monomials containing x
- Return $F_{\vec{m}}^{2} F_{\text {mit }}^{3}$ - Repeat for F_{j} and G_{j} in smaller and smaller Boolean rings $B[j, n]$.

The LG-elim algorithm

- Replace F with $\mathrm{F} \cup L \cdot G$.
- Gauss eliminate w.r.t degree to produce F^{2}, F^{3} from F.
- Split F^{2} and F^{3} into $F_{x_{1}}^{2}, F_{x_{1}}^{3}, F_{\bar{x}_{1}}^{2} F_{\bar{x}_{1}}^{3}$ by Gaussian elimination on monomials containing x_{1}.
- Return $F_{\overline{x_{1}}}^{2} F_{\overline{x_{1}}}^{3}$.

[^4]
The LG-elim algorithm

- Replace F with $\mathrm{F} \cup L \cdot G$.
- Gauss eliminate w.r.t degree to produce F^{2}, F^{3} from F.
- Split F^{2} and F^{3} into $F_{x_{1}}^{2}, F_{x_{1}}^{3}, F_{\bar{x}_{1}}^{2} F_{\bar{x}_{1}}^{3}$ by Gaussian elimination on monomials containing x_{1}.
- Return $F_{\overline{x_{1}}}^{2} F_{\overline{x_{1}}}^{3}$.
- Repeat for F_{j} and G_{j} in smaller and smaller Boolean rings $B[j, n]$.

Main elimination algorithm: Eliminate

```
- Split G into }\mp@subsup{G}{\mp@subsup{x}{1}{}}{},\mp@subsup{G}{\overline{\mp@subsup{x}{1}{}}}{}\subsetB[2,n]\mathrm{ by Gaussian elimination on monomials
    containing }\mp@subsup{x}{1}{
- If G}\mp@subsup{G}{\mp@subsup{x}{1}{}}{}\mathrm{ or }\mp@subsup{G}{\overline{\mp@subsup{x}{1}{}}}{}\mathrm{ changed in last iteration, then
    - Replace F with (x, +1)G}\mp@subsup{G}{\mp@subsup{x}{1}{}}{\cup\cup\mp@subsup{x}{1}{}\mp@subsup{G}{\overline{\mp@subsup{x}{1}{}}}{}\cupF\mathrm{ producing more cubic polynomials.}
    - Normalize F}\mathrm{ with respect to }\mp@subsup{G}{\mp@subsup{x}{1}{}}{}\mathrm{ to eliminate particular monomials containing x
    - Produce more degree 3 relations from resultants and coefficient constraints w.r.t
```



```
    -Gauss eliminate w.r.t degree to produce P}\mp@subsup{P}{}{2},\mp@subsup{\eta}{}{3}\mathrm{ from P
    Split F}\mp@subsup{F}{}{2}\mathrm{ into }\mp@subsup{F}{\mp@subsup{x}{1}{2}}{2},\mp@subsup{F}{2}{2}\mathrm{ by Gaussian elimination on monomials containing x1
    - }\mp@subsup{G}{\mp@subsup{x}{1}{}}{}\leftarrow\mp@subsup{G}{\mp@subsup{x}{1}{}}{}\cup\mp@subsup{F}{\mp@subsup{x}{1}{}}{2},\mp@subsup{G}{\mp@subsup{x}{1}{}}{}\mathrm{ changes if }\mp@subsup{F}{\mp@subsup{x}{1}{}}{2}\not=\emptyset\mathrm{ , causing new iteration
    - }\mp@subsup{G}{\overline{\mp@subsup{x}{1}{}}}{}\leftarrow\mp@subsup{G}{\overline{\mp@subsup{x}{1}{}}}{}\cup\mp@subsup{F}{\overline{\mp@subsup{x}{1}{}}}{2},\mp@subsup{G}{\overline{\mp@subsup{x}{1}{}}}{}\mathrm{ changes if }\mp@subsup{F}{\overline{\mp@subsup{x}{1}{}}}{2}\not=\emptyset\mathrm{ , causing new iteration
- Split F}\mp@subsup{F}{}{3}\mathrm{ into }\mp@subsup{F}{\mp@subsup{x}{1}{}}{3},\mp@subsup{F}{\overline{\mp@subsup{x}{1}{}}}{3}\mathrm{ by Gaussian elimination on monomials containing x
    Return F}\mp@subsup{F}{\overline{\mp@subsup{x}{1}{}}}{3},\mp@subsup{G}{\overline{\mp@subsup{x}{1}{}}}{
```

Main elimination algorithm: Eliminate

- Split G into $G_{x_{1}}, G_{\overline{x_{1}}} \subset B[2, n]$ by Gaussian elimination on monomials containing x_{1}

Main elimination algorithm: Eliminate

- Split G into $G_{x_{1}}, G_{\overline{x_{1}}} \subset B[2, n]$ by Gaussian elimination on monomials containing x_{1}
- If $G_{x_{1}}$ or $G_{\overline{x_{1}}}$ changed in last iteration, then

Main elimination algorithm: Eliminate

- Split G into $G_{x_{1}}, G_{\overline{x_{1}}} \subset B[2, n]$ by Gaussian elimination on monomials containing x_{1}
- If $G_{x_{1}}$ or $G_{\overline{x_{1}}}$ changed in last iteration, then
- Replace F with $\left(x_{1}+1\right) G_{x_{1}} \cup x_{1} G_{\overline{x_{1}}} \cup F$ producing more cubic polynomials.

Main elimination algorithm: Eliminate

- Split G into $G_{x_{1}}, G_{\overline{x_{1}}} \subset B[2, n]$ by Gaussian elimination on monomials containing x_{1}
- If $G_{x_{1}}$ or $G_{\overline{x_{1}}}$ changed in last iteration, then
- Replace F with $\left(x_{1}+1\right) G_{x_{1}} \cup x_{1} G_{\overline{x_{1}}} \cup F$ producing more cubic polynomials.
- Normalize F with respect to $G_{x_{1}}$ to eliminate particular monomials containing x_{1}.

Main elimination algorithm: Eliminate

- Split G into $G_{x_{1}}, G_{\overline{x_{1}}} \subset B[2, n]$ by Gaussian elimination on monomials containing x_{1}
- If $G_{x_{1}}$ or $G_{\overline{x_{1}}}$ changed in last iteration, then
- Replace F with $\left(x_{1}+1\right) G_{x_{1}} \cup x_{1} G_{\overline{x_{1}}} \cup F$ producing more cubic polynomials.
- Normalize F with respect to $G_{x_{1}}$ to eliminate particular monomials containing x_{1}.
- Produce more degree 3 relations from resultants and coefficient constraints w.r.t x_{1} of $G_{x_{1}}$ and add to F.

Main elimination algorithm: Eliminate

- Split G into $G_{x_{1}}, G_{\overline{x_{1}}} \subset B[2, n]$ by Gaussian elimination on monomials containing x_{1}
- If $G_{x_{1}}$ or $G_{\overline{x_{1}}}$ changed in last iteration, then
- Replace F with $\left(x_{1}+1\right) G_{x_{1}} \cup x_{1} G_{\overline{x_{1}}} \cup F$ producing more cubic polynomials.
- Normalize F with respect to $G_{x_{1}}$ to eliminate particular monomials containing x_{1}.
- Produce more degree 3 relations from resultants and coefficient constraints w.r.t x_{1} of $G_{x_{1}}$ and add to F.
- Gauss eliminate w.r.t degree to produce F^{2}, F^{3} from F.

Main elimination algorithm: Eliminate

- Split G into $G_{x_{1}}, G_{\overline{x_{1}}} \subset B[2, n]$ by Gaussian elimination on monomials containing x_{1}
- If $G_{x_{1}}$ or $G_{\overline{x_{1}}}$ changed in last iteration, then
- Replace F with $\left(x_{1}+1\right) G_{x_{1}} \cup x_{1} G_{\overline{x_{1}}} \cup F$ producing more cubic polynomials.
- Normalize F with respect to $G_{x_{1}}$ to eliminate particular monomials containing x_{1}.
- Produce more degree 3 relations from resultants and coefficient constraints w.r.t x_{1} of $G_{x_{1}}$ and add to F.
- Gauss eliminate w.r.t degree to produce F^{2}, F^{3} from F.
- Split F^{2} into $F_{x_{1}}^{2}, F_{x_{1}}^{2}$ by Gaussian elimination on monomials containing x_{1}.

Main elimination algorithm: Eliminate

- Split G into $G_{x_{1}}, G_{\overline{x_{1}}} \subset B[2, n]$ by Gaussian elimination on monomials containing x_{1}
- If $G_{x_{1}}$ or $G_{\overline{x_{1}}}$ changed in last iteration, then
- Replace F with $\left(x_{1}+1\right) G_{x_{1}} \cup x_{1} G_{\overline{x_{1}}} \cup F$ producing more cubic polynomials.
- Normalize F with respect to $G_{x_{1}}$ to eliminate particular monomials containing x_{1}.
- Produce more degree 3 relations from resultants and coefficient constraints w.r.t x_{1} of $G_{x_{1}}$ and add to F.
- Gauss eliminate w.r.t degree to produce F^{2}, F^{3} from F.
- Split F^{2} into $F_{x_{1}}^{2}, F_{x_{1}}^{2}$ by Gaussian elimination on monomials containing x_{1}.
- $G_{x_{1}} \leftarrow G_{x_{1}} \cup F_{x_{1}}^{2}, G_{x_{1}}$ changes if $F_{x_{1}}^{2} \neq \emptyset$, causing new iteration

Main elimination algorithm: Eliminate

- Split G into $G_{x_{1}}, G_{\overline{x_{1}}} \subset B[2, n]$ by Gaussian elimination on monomials containing x_{1}
- If $G_{x_{1}}$ or $G_{\overline{x_{1}}}$ changed in last iteration, then
- Replace F with $\left(x_{1}+1\right) G_{x_{1}} \cup x_{1} G_{\overline{x_{1}}} \cup F$ producing more cubic polynomials.
- Normalize F with respect to $G_{x_{1}}$ to eliminate particular monomials containing x_{1}.
- Produce more degree 3 relations from resultants and coefficient constraints w.r.t x_{1} of $G_{x_{1}}$ and add to F.
- Gauss eliminate w.r.t degree to produce F^{2}, F^{3} from F.
- Split F^{2} into $F_{x_{1}}^{2}, F_{x_{1}}^{2}$ by Gaussian elimination on monomials containing x_{1}.
- $G_{x_{1}} \leftarrow G_{x_{1}} \cup F_{x_{1}}^{2}, G_{x_{1}}$ changes if $F_{x_{1}}^{2} \neq \emptyset$, causing new iteration
- $G_{\overline{x_{1}}} \leftarrow G_{\overline{x_{1}}} \cup F_{\overline{x_{1}}}^{2}, G_{\overline{x_{1}}}$ changes if $F_{\overline{x_{1}}}^{2} \neq \emptyset$, causing new iteration

Main elimination algorithm: Eliminate

- Split G into $G_{x_{1}}, G_{\overline{x_{1}}} \subset B[2, n]$ by Gaussian elimination on monomials containing x_{1}
- If $G_{x_{1}}$ or $G_{\overline{x_{1}}}$ changed in last iteration, then
- Replace F with $\left(x_{1}+1\right) G_{x_{1}} \cup x_{1} G_{\overline{x_{1}}} \cup F$ producing more cubic polynomials.
- Normalize F with respect to $G_{x_{1}}$ to eliminate particular monomials containing x_{1}.
- Produce more degree 3 relations from resultants and coefficient constraints w.r.t x_{1} of $G_{x_{1}}$ and add to F.
- Gauss eliminate w.r.t degree to produce F^{2}, F^{3} from F.
- Split F^{2} into $F_{x_{1}}^{2}, F_{x_{1}}^{2}$ by Gaussian elimination on monomials containing x_{1}.
- $G_{x_{1}} \leftarrow G_{x_{1}} \cup F_{x_{1}}^{2}, G_{x_{1}}$ changes if $F_{x_{1}}^{2} \neq \emptyset$, causing new iteration
- $G_{\overline{x_{1}}} \leftarrow G_{\overline{x_{1}}} \cup F_{\overline{x_{1}}}^{2}, G_{\overline{x_{1}}}$ changes if $F_{\overline{x_{1}}}^{2} \neq \emptyset$, causing new iteration
- Split F^{3} into $F_{x_{1}}^{3}, F_{\bar{x}_{1}}^{3}$ by Gaussian elimination on monomials containing x_{1} and Return $F_{\overline{x_{1}}}^{3}, G_{\overline{x_{1}}}$

Remarks and Complexity

- In general we have $\langle F \cup L G\rangle \cap B[2, n] \subseteq\left\langle F_{\overline{x_{1}}}^{3} \cup L_{2} G_{\overline{x_{1}}}\right\rangle$ even if we look for more quadratic polynomials in the LG-algorithm.
- $\binom{n-1}{-s}$ and $\binom{n-1}{-2}$ is the tight upper bound on the number of monomials and polynomials which can occur in F and G, respectively.
- Space complexity of the algorithm is storing $\mathcal{O}\left(n^{6}\right)$ monomials.
- The time complexity is dominated by the linear algebra done in $S p l i t D e g 2 / 3$ and SplitVariable. In the worst case, we have input size $\mathcal{O}\left(n^{3}\right)$ in both polynomials and monomials, so the matrices constructed are of size $\mathcal{O}\left(n^{3}\right) \times \mathcal{O}\left(n^{3}\right)$. This leads to $\mathcal{O}\left(n^{9}\right)$ for the Gaussian reduction.

Remarks and Complexity

- In general we have $\langle F \cup L G\rangle \cap B[2, n] \subseteq\left\langle F_{\overline{x_{1}}}^{3} \cup L_{2} G_{\overline{x_{1}}}\right\rangle$ even if we look for more quadratic polynomials in the LG-algorithm.

```
\(\square\)
```


Remarks and Complexity

- In general we have $\langle F \cup L G\rangle \cap B[2, n] \subseteq\left\langle F_{\overline{x_{1}}}^{3} \cup L_{2} G_{\overline{x_{1}}}\right\rangle$ even if we look for more quadratic polynomials in the LG-algorithm.
- $\binom{n-1}{\leq 3}$ and $\binom{n-1}{\leq 2}$ is the tight upper bound on the number of monomials and polynomials which can occur in F and G, respectively.

Space complexity of the algorithm is storing $O\left(n^{6}\right)$ monomials. The time complexity is dominated by the lin
SplitVariable. In the worst case, we have in
and monomials, so the matrices constructed
leads to $\mathcal{O}\left(n^{9}\right)$ for the Gaussian reduction.

Remarks and Complexity

- In general we have $\langle F \cup L G\rangle \cap B[2, n] \subseteq\left\langle F_{\overline{x_{1}}}^{3} \cup L_{2} G_{\overline{x_{1}}}\right\rangle$ even if we look for more quadratic polynomials in the LG-algorithm.
- $\binom{n-1}{\leq 3}$ and $\binom{n-1}{\leq 2}$ is the tight upper bound on the number of monomials and polynomials which can occur in F and G, respectively.
- Space complexity of the algorithm is storing $\mathcal{O}\left(n^{6}\right)$ monomials.
\square

Remarks and Complexity

- In general we have $\langle F \cup L G\rangle \cap B[2, n] \subseteq\left\langle F_{\overline{x_{1}}}^{3} \cup L_{2} G_{\overline{x_{1}}}\right\rangle$ even if we look for more quadratic polynomials in the LG-algorithm.
- $\binom{n-1}{\leq 3}$ and $\binom{n-1}{\leq 2}$ is the tight upper bound on the number of monomials and polynomials which can occur in F and G, respectively.
- Space complexity of the algorithm is storing $\mathcal{O}\left(n^{6}\right)$ monomials.
- The time complexity is dominated by the linear algebra done in SplitDeg2/3 and SplitVariable. In the worst case, we have input size $\mathcal{O}\left(n^{3}\right)$ in both polynomials and monomials, so the matrices constructed are of size $\mathcal{O}\left(n^{3}\right) \times \mathcal{O}\left(n^{3}\right)$. This leads to $\mathcal{O}\left(n^{9}\right)$ for the Gaussian reduction.

- Uses a 3×3 S-box $\rightarrow 14$ quadratic polynomials describe S-box \rightarrow S-boxes do not cover the whole state \rightarrow part of the cipher block is not affected by the S-box layer.
- Cipher parameters used: Block size: 24 bits, Key size: 32 bits, 1 S-box per round, 12/13 rounds.

The (Reduced) LowMC cipher

- Uses a 3×3 S-box $\rightarrow 14$ quadratic polynomials describe S-box \rightarrow S-boxes do not cover the whole state \rightarrow part of the cipher block is not affected by the S-box layer.
- Cipher parameters used: Block size: 24 bits, Key size: 32 bits, 1 S-box per round, 12/13 rounds.

The (Reduced) LowMC cipher

- Uses a 3×3 S-box $\rightarrow 14$ quadratic polynomials describe S-box \rightarrow S-boxes do not cover the whole state \rightarrow part of the cipher block is not affected by the S-box layer.

The (Reduced) LowMC cipher

- Uses a 3×3 S-box $\rightarrow 14$ quadratic polynomials describe S-box \rightarrow S-boxes do not cover the whole state \rightarrow part of the cipher block is not affected by the S-box layer.
- Cipher parameters used: Block size: 24 bits, Key size: 32 bits, 1 S-box per round, 12/13 rounds.

Experimental results

- Eliminate all variables x_{i} for $i \geq 32 \rightarrow$ Find some polynomials of degree at most 3 , only in x_{0},
- 12 rounds: 44 variables, $F=0,|G|=168$.
- $L G$ - elim: Produces 1-2 cubic polynomial(s) only in key variables. Memory requirement: Store 7560 polynomials from $G \cdot L$.
- eliminate: Produce same polynomials as $L G$-elin. Size of F never above 2000 polynomials \leftrightarrow eliminate has less space complexity than $L G$ - elim. Running time: Roughly the same.
- 15 different systems using different p / c-pairs $\rightarrow 20$ cubic polynomials in only key bits \rightarrow Seems that we can produce many independent polynomials from different p/c-pairs.
- Checking for linear dependencies among 20 cubic polynomials we produced five linear polynomials in only key bits \leftrightarrow Need much fewer polynomials than expected to find the values of $20 \ldots \ldots 21$
- 13 rounds: 47 variables, $F=\emptyset,|G|=182$. For the 13 -round systems we tried, neither $L G$ - elim or eliminate found any cubic polynomials in only key variables \rightarrow Only up to 12 rounds may be attacked using techniques.

Experimental results

- Eliminate all variables x_{i} for $i \geq 32 \rightarrow$ Find some polynomials of degree at most 3 , only in x_{0}, \ldots, x_{31}.

12 rounds:

\square requirement: Store rout polynomials from cran^{2}

Produce same polynomials as $L G$ - elim. Size of F never above 2000 polynomials \leftrightarrow eliminate has less space complexity than $L G-$ elim. Running time: Roughly the same.

- 15 different systems using different p / c-pairs $\rightarrow 20$ cubic polynomials in only key bits \rightarrow Seems that we can produce many independent polynomials from different p/c-pairs
\qquad

Experimental results

- Eliminate all variables x_{i} for $i \geq 32 \rightarrow$ Find some polynomials of degree at most 3 , only in x_{0}, \ldots, x_{31}.
- 12 rounds: 44 variables, $F=\emptyset,|G|=168$.
- LG - elim: Produces 1-2 cubic polynomial(s) only in key variables. Memory requirement: Store 7560 polynomials from $G \cdot L$.

Experimental results

- Eliminate all variables x_{i} for $i \geq 32 \rightarrow$ Find some polynomials of degree at most 3 , only in x_{0}, \ldots, x_{31}.
- 12 rounds: 44 variables, $F=\emptyset,|G|=168$.
- LG-elim: Produces 1-2 cubic polynomial(s) only in key variables. Memory requirement: Store 7560 polynomials from $G \cdot L$.
- eliminate: Produce same polynomials as $L G$ - elim. Size of F never above 2000 polynomials \leftrightarrow eliminate has less space complexity than $L G-$ elim. Running time: Roughly the same.

Experimental results

- Eliminate all variables x_{i} for $i \geq 32 \rightarrow$ Find some polynomials of degree at most 3 , only in x_{0}, \ldots, x_{31}.
- 12 rounds: 44 variables, $F=\emptyset,|G|=168$.
- LG-elim: Produces 1-2 cubic polynomial(s) only in key variables. Memory requirement: Store 7560 polynomials from $G \cdot L$.
- eliminate: Produce same polynomials as $L G$ - elim. Size of F never above 2000 polynomials \leftrightarrow eliminate has less space complexity than $L G$ - elim. Running time: Roughly the same.
- 15 different systems using different p /c-pairs $\rightarrow 20$ cubic polynomials in only key bits \rightarrow Seems that we can produce many independent polynomials from different p/c-pairs.

Other results

Experimental results

- Eliminate all variables x_{i} for $i \geq 32 \rightarrow$ Find some polynomials of degree at most 3 , only in x_{0}, \ldots, x_{31}.
- 12 rounds: 44 variables, $F=\emptyset,|G|=168$.
- LG-elim: Produces 1-2 cubic polynomial(s) only in key variables. Memory requirement: Store 7560 polynomials from $G \cdot L$.
- eliminate: Produce same polynomials as $L G$ - elim. Size of F never above 2000 polynomials \leftrightarrow eliminate has less space complexity than LG-elim. Running time: Roughly the same.
- 15 different systems using different p /c-pairs $\rightarrow 20$ cubic polynomials in only key bits \rightarrow Seems that we can produce many independent polynomials from different p/c-pairs.

Other results

- Checking for linear dependencies among 20 cubic polynomials we produced five linear polynomials in only key bits \leftrightarrow Need much fewer polynomials than expected to find the values of x_{0}, \ldots, x_{31}.

Experimental results

- Eliminate all variables x_{i} for $i \geq 32 \rightarrow$ Find some polynomials of degree at most 3 , only in x_{0}, \ldots, x_{31}.
- 12 rounds: 44 variables, $F=\emptyset,|G|=168$.
- LG-elim: Produces 1-2 cubic polynomial(s) only in key variables. Memory requirement: Store 7560 polynomials from $G \cdot L$.
- eliminate: Produce same polynomials as $L G$ - elim. Size of F never above 2000 polynomials \leftrightarrow eliminate has less space complexity than LG-elim. Running time: Roughly the same.
- 15 different systems using different p /c-pairs $\rightarrow 20$ cubic polynomials in only key bits \rightarrow Seems that we can produce many independent polynomials from different p/c-pairs.

Other results

- Checking for linear dependencies among 20 cubic polynomials we produced five linear polynomials in only key bits \leftrightarrow Need much fewer polynomials than expected to find the values of x_{0}, \ldots, x_{31}.
- 13 rounds: 47 variables, $F=\emptyset,|G|=182$. For the 13 -round systems we tried, neither $L G$ - elim or eliminate found any cubic polynomials in only key variables \rightarrow Only up to 12 rounds may be attacked using techniques.

The toy cipher

- Uses four 4×4 S-boxes (the same S-box as used in PRINCE) \rightarrow Use same key in every round.
 Cipher parameters used: Block size: 16-bit, key size: 16 -bit \rightarrow Used a 4 -round version of Cipher.

The toy cipher

- Uses four 4×4 S-boxes (the same S-box as used in PRINCE) \rightarrow Use same key in every round.

The toy cipher

- Uses four 4×4 S-boxes (the same S-box as used in PRINCE) \rightarrow Use same key in every round.
- Cipher parameters used: Block size: 16 -bit, key size: 16 -bit \rightarrow Used a 4 -round version of Cipher.

Experimental results

- Eliminate all non-key variables x_{16}, \ldots, x_{63} from the system \rightarrow Find some polynomials of degree at most 3 only in x_{0}, \ldots, x_{15}.
- 4 rounds: 64 variables. $F=\emptyset .|G|=336$
- None of LG - elim or eliminate were able to find any cubic polynomial in only key variables.
- Running LG-elim/eliminate \rightarrow Throw away polynomials giving constraints on the solution space Introduce false solutions.
e $F=\emptyset$ and $G=\emptyset \rightarrow$ all solutions are valid \rightarrow "Lost all information about the possible solutions to the original equation system"
- Measure how fast the information about the solutions we seek disappear for the toy cipher.
- With only a 16 -bit key it is possible to do exhaustive search \rightarrow Check which key values that fit in any of the equation systems we get after eliminating some variables.

Experimental results

- Eliminate all non-key variables x_{16}, \ldots, x_{63} from the system \rightarrow Find some polynomials of degree at most 3 only in x_{0}, \ldots, x_{15}.
4 rounds: 64 variables, $F=(,|G|=336$ None of $L G$
key variables.

Experimental results

- Eliminate all non-key variables x_{16}, \ldots, x_{63} from the system \rightarrow Find some polynomials of degree at most 3 only in x_{0}, \ldots, x_{15}.
- 4 rounds: 64 variables, $F=\emptyset,|G|=336$
- None of $L G$ - elim or eliminate were able to find any cubic polynomial in only key variables.

Information loss

\square

Experimental results

- Eliminate all non-key variables x_{16}, \ldots, x_{63} from the system \rightarrow Find some polynomials of degree at most 3 only in x_{0}, \ldots, x_{15}.
- 4 rounds: 64 variables, $F=\emptyset,|G|=336$
- None of $L G$ - elim or eliminate were able to find any cubic polynomial in only key variables.

Information loss

- Running LG-elim/eliminate \rightarrow Throw away polynomials giving constraints on the solution space Introduce false solutions.
possible solutions to the original equation system"
\qquad toy cipher
\qquad values that fit in any of the equation systems we get after eliminating some

Experimental results

- Eliminate all non-key variables x_{16}, \ldots, x_{63} from the system \rightarrow Find some polynomials of degree at most 3 only in x_{0}, \ldots, x_{15}.
- 4 rounds: 64 variables, $F=\emptyset,|G|=336$
- None of $L G$ - elim or eliminate were able to find any cubic polynomial in only key variables.

Information loss

- Running LG-elim/eliminate \rightarrow Throw away polynomials giving constraints on the solution space Introduce false solutions.
- $F=\emptyset$ and $G=\emptyset \rightarrow$ all solutions are valid \rightarrow "Lost all information about the possible solutions to the original equation system".
\qquad values that fit in any of the equation systems we get after eliminating some

Experimental results

- Eliminate all non-key variables x_{16}, \ldots, x_{63} from the system \rightarrow Find some polynomials of degree at most 3 only in x_{0}, \ldots, x_{15}.
- 4 rounds: 64 variables, $F=\emptyset,|G|=336$
- None of $L G$ - elim or eliminate were able to find any cubic polynomial in only key variables.

Information loss

- Running LG-elim/eliminate \rightarrow Throw away polynomials giving constraints on the solution space Introduce false solutions.
- $F=\emptyset$ and $G=\emptyset \rightarrow$ all solutions are valid \rightarrow "Lost all information about the possible solutions to the original equation system".
- Measure how fast the information about the solutions we seek disappear for the toy cipher.
\square

Experimental results

- Eliminate all non-key variables x_{16}, \ldots, x_{63} from the system \rightarrow Find some polynomials of degree at most 3 only in x_{0}, \ldots, x_{15}.
- 4 rounds: 64 variables, $F=\emptyset,|G|=336$
- None of $L G$ - elim or eliminate were able to find any cubic polynomial in only key variables.

Information loss

- Running LG-elim/eliminate \rightarrow Throw away polynomials giving constraints on the solution space Introduce false solutions.
- $F=\emptyset$ and $G=\emptyset \rightarrow$ all solutions are valid \rightarrow "Lost all information about the possible solutions to the original equation system".
- Measure how fast the information about the solutions we seek disappear for the toy cipher.
- With only a 16 -bit key it is possible to do exhaustive search \rightarrow Check which key values that fit in any of the equation systems we get after eliminating some variables.

The information loss experiment

- Eliminate variables distributed evenly throughout the system \rightarrow Check how many keys fits in the given system after each elimination \rightarrow Gives information on how much information the system has about the unknown secret key.
- The amount of information a system S has about the key: $i(S)=16-\log _{2}$ (\# of keys that fit in S). S_{v} is the system after eliminating v variables.
- For the plaintext/ciphertext pair we used there were three keys that fit in the initial system $\leftrightarrow i\left(S_{0}\right) \approx 14.42$.
- What is the rate of information loss during elimination?

The information loss experiment

- Eliminate variables distributed evenly throughout the system \rightarrow Check how many keys fits in the given system after each elimination \rightarrow Gives information on how much information the system has about the unknown secret key.

The information loss experiment

- Eliminate variables distributed evenly throughout the system \rightarrow Check how many keys fits in the given system after each elimination \rightarrow Gives information on how much information the system has about the unknown secret key.
- The amount of information a system S has about the key: $i(S)=16-\log _{2}$ (\# of keys that fit in S). S_{v} is the system after eliminating v variables.

The information loss experiment

- Eliminate variables distributed evenly throughout the system \rightarrow Check how many keys fits in the given system after each elimination \rightarrow Gives information on how much information the system has about the unknown secret key.
- The amount of information a system S has about the key: $i(S)=16-\log _{2}$ (\# of keys that fit in S). S_{v} is the system after eliminating v variables.
- For the plaintext/ciphertext pair we used there were three keys that fit in the initial system $\leftrightarrow i\left(S_{0}\right) \approx 14.42$.

The information loss experiment

- Eliminate variables distributed evenly throughout the system \rightarrow Check how many keys fits in the given system after each elimination \rightarrow Gives information on how much information the system has about the unknown secret key.
- The amount of information a system S has about the key: $i(S)=16-\log _{2}$ (\# of keys that fit in S). S_{v} is the system after eliminating v variables.
- For the plaintext/ciphertext pair we used there were three keys that fit in the initial system $\leftrightarrow i\left(S_{0}\right) \approx 14.42$.
- What is the rate of information loss during elimination?

Figure: $i\left(S_{v}\right)$ for $0 \leq v \leq 31$

What this tells us

- For the Toy cipher it is possible to construct a cubic equation system, with the same information on the key, with only $k+(n-k) / 2$ variables where k is the number of key bits \rightarrow Trade-off between degree and number of variables needed to describe a cipher.
- I.e: For the toy cipher, increasing the degree by one allows to cut the number of non-key variables in half to describe the same cipher.
- Attacks on other ciphers? When does the algorithm work and not?
- Generalizations of elimination algorithm?

What this tells us

- For the Toy cipher it is possible to construct a cubic equation system, with the same information on the key, with only $k+(n-k) / 2$ variables where k is the number of key bits \rightarrow Trade-off between degree and number of variables needed to describe a cipher.
- Attacks on other ciphers? When does the algorithm work and not?
- Generalizations of elimination algorithm?

What this tells us

- For the Toy cipher it is possible to construct a cubic equation system, with the same information on the key, with only $k+(n-k) / 2$ variables where k is the number of key bits \rightarrow Trade-off between degree and number of variables needed to describe a cipher.
- I.e: For the toy cipher, increasing the degree by one allows to cut the number of non-key variables in half to describe the same cipher.
- Attacks on other ciphers? When does the algorithm work and not?
- Generalizations of elimination algorithm?

What this tells us

- For the Toy cipher it is possible to construct a cubic equation system, with the same information on the key, with only $k+(n-k) / 2$ variables where k is the number of key bits \rightarrow Trade-off between degree and number of variables needed to describe a cipher.
- I.e: For the toy cipher, increasing the degree by one allows to cut the number of non-key variables in half to describe the same cipher.

Open questions

- Generalizations of elimination algorithm?

What this tells us

- For the Toy cipher it is possible to construct a cubic equation system, with the same information on the key, with only $k+(n-k) / 2$ variables where k is the number of key bits \rightarrow Trade-off between degree and number of variables needed to describe a cipher.
- I.e: For the toy cipher, increasing the degree by one allows to cut the number of non-key variables in half to describe the same cipher.

Open questions

- Attacks on other ciphers? When does the algorithm work and not?

What this tells us

- For the Toy cipher it is possible to construct a cubic equation system, with the same information on the key, with only $k+(n-k) / 2$ variables where k is the number of key bits \rightarrow Trade-off between degree and number of variables needed to describe a cipher.
- I.e: For the toy cipher, increasing the degree by one allows to cut the number of non-key variables in half to describe the same cipher.

Open questions

- Attacks on other ciphers? When does the algorithm work and not?
- Generalizations of elimination algorithm?

[^0]: - We have to compute the full Gröbner basis before elimination

 2. - Eliminates one monomial at the time.
 3. - Gröbner bases are hard to compute \rightarrow high complexity (All possible degrees)
[^1]: Boolean functions in cryptography
 Ciphers defined over $G F(2)$ can always be described as a system of Boolean equations of degree $2 \rightarrow$ introduce enough auxiliary variables \rightarrow Solving this system of equations w.r.t K : Algebraic cryptanalysis.

[^2]: Good news
 2×2 determinants are easy to compute, and cubic polynomials can be handled by a computer. Also the size of n we encounter in cryptanalysis of block ciphers are within tolerances.

[^3]: Good news
 2×2 determinants are easy to compute, and cubic polynomials can be handled by a
 computer. Also the size of n we encounter in cryptanalysis of block ciphers are within tolerances.

[^4]: - Repeat for F_{j} and G_{j} in smaller and smaller Boolean rings $B[j, n]$.

