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I(F) = (f1,...,[fs), with zero set
Z(I(F)) ={aeF3|f(a) =0 for every f € I(F)}.

Elimination of variables from Boolean functions
o Objective: Given I(F) C B[1,n] we want to find I'(F) C B[2,n] s.th
Z(I'(F)) =m(Z(I(F))) +» Compute J C I'(F) as large as possible given
computational restrictions.
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Boolean functions
o B[l,n] =Fafx1,...,x0])/(x? +zili =1,...,n)
e Set of Boolean equations F = {f1,..., fs} in B[1,n] <> F generate an ideal

I(F) = (f1,...,[fs), with zero set
Z(I(F)) ={acFz|f(a) =0 for every f € I(F)}.

Elimination of variables from Boolean functions
e Objective: Given I(F) C BJ[1,n| we want to find I'(F) C B[2,n] s.th
Z(I'(F)) =m(Z(I(F))) +» Compute J C I'(F) as large as possible given
computational restrictions.

o In general: We can eliminate more variables in the same fashion — k'th
elimination ideal I(F') N B[k + 1,n].
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Boolean functions
o B[l,n] =Fafx1,...,x0])/(x? +zili =1,...,n)
e Set of Boolean equations F = {f1,..., fs} in B[1,n] <> F generate an ideal

I(F) = (f1,...,[fs), with zero set
Z(I(F)) ={acFz|f(a) =0 for every f € I(F)}.

Elimination of variables from Boolean functions
e Objective: Given I(F) C BJ[1,n| we want to find I'(F) C B[2,n] s.th
Z(I'(F)) =m(Z(I(F))) +» Compute J C I'(F) as large as possible given
computational restrictions.
o In general: We can eliminate more variables in the same fashion — k'th
elimination ideal I(F') N B[k + 1,n].
e Without loss of generality we eliminate variables in the order z1, 2, ..., 2y
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The Elimination Theorem

Theorem

If G(F) is a Grébner basis for the ideal I(F) with respect to the (lex) order
T1 > To > -+ > Ty, then

Gi(F)=G(F)NBlk+1,n]

is a Grébner basis of the k'th elimination ideal I*(F).
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The Elimination Theorem

Theorem

If G(F) is a Grébner basis for the ideal I(F) with respect to the (lex) order
T1 > X2 > - > Ty, then

Gr(F) = G(F) N Blk + 1,7]

is a Grébner basis of the k'th elimination ideal I*(F).

+ Computes the full elimination ideal

+ Preserves all "exact” solutions of the original system

1. — We have to compute the full Grébner basis before elimination.
2. — Eliminates one monomial at the time.
3. — Groébner bases are hard to compute — high complexity (All possible degrees)

v
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e Defined over the binary field GF'(2) — block encryption algorithms Ex (P) = C
takes a fixed length plaintext P and a secret key K as inputs, and produces a
ciphertext C.
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e Defined over the binary field GF(2) — block encryption algorithms Ex (P) = C
takes a fixed length plaintext P and a secret key K as inputs, and produces a
ciphertext C.
e Divides the data into blocks of fixed size, and then encrypting each block

separately. The encryption usually consists of iterating a round function,
consisting of suitable linear and nonlinear transformations
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Symmetric cryptography

e Defined over the binary field GF(2) — block encryption algorithms Ex (P) = C
takes a fixed length plaintext P and a secret key K as inputs, and produces a
ciphertext C.

e Divides the data into blocks of fixed size, and then encrypting each block
separately. The encryption usually consists of iterating a round function,
consisting of suitable linear and nonlinear transformations

e A known plaintext attack: Assume both P and C' are known. Objective: Extract
the secret key K.

Boolean functions in cryptography
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e Divides the data into blocks of fixed size, and then encrypting each block
separately. The encryption usually consists of iterating a round function,
consisting of suitable linear and nonlinear transformations

e A known plaintext attack: Assume both P and C' are known. Objective: Extract
the secret key K.

Boolean functions in cryptography

Ciphers defined over GF'(2) can always be described as a system of Boolean
equations of degree 2 — introduce enough auxiliary variables — Solving this system
of equations w.r.t K: Algebraic cryptanalysis.
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e Defined over the binary field GF(2) — block encryption algorithms Ex (P) = C
takes a fixed length plaintext P and a secret key K as inputs, and produces a
ciphertext C.

e Divides the data into blocks of fixed size, and then encrypting each block
separately. The encryption usually consists of iterating a round function,
consisting of suitable linear and nonlinear transformations

e A known plaintext attack: Assume both P and C' are known. Objective: Extract
the secret key K.

Boolean functions in cryptography

Ciphers defined over GF'(2) can always be described as a system of Boolean
equations of degree 2 — introduce enough auxiliary variables — Solving this system
of equations w.r.t K: Algebraic cryptanalysis.

e The bits of the cipher states during encryption can always be described as
polynomials in the user-selected key!
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Symmetric cryptography

e Defined over the binary field GF(2) — block encryption algorithms Ex (P) = C
takes a fixed length plaintext P and a secret key K as inputs, and produces a
ciphertext C.

e Divides the data into blocks of fixed size, and then encrypting each block
separately. The encryption usually consists of iterating a round function,
consisting of suitable linear and nonlinear transformations

e A known plaintext attack: Assume both P and C' are known. Objective: Extract
the secret key K.

Boolean functions in cryptography

Ciphers defined over GF'(2) can always be described as a system of Boolean
equations of degree 2 — introduce enough auxiliary variables — Solving this system
of equations w.r.t K: Algebraic cryptanalysis.

e The bits of the cipher states during encryption can always be described as
polynomials in the user-selected key!

e Over multiple rounds in a block cipher algorithm, the degree of the polynomials
in only user-selected key bits grow fast, making the equations hard to solve.

V.
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using “many"” variables, is it possible to efficiently eliminate all the auxiliary variables,
such that we end up with some low-degree equations in which the only variables are
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The block cipher problem

If we start with a description of a block cipher as a system of equations of degree 2
using “many" variables, is it possible to efficiently eliminate all the auxiliary variables,
such that we end up with some low-degree equations in which the only variables are
the bits of K7

NB!

We are guaranteed that the correct key K is one solution to this system, but
restricting the degree means that we get many false keys as well.
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using “many” variables, is it possible to efficiently eliminate all the auxiliary variables,
such that we end up with some low-degree equations in which the only variables are
the bits of K7

NB!

We are guaranteed that the correct key K is one solution to this system, but
restricting the degree means that we get many false keys as well.

How to solve equations after elimination

1. The general method: Enumerating the possible solutions to the final system and
"lifting" these through the intermediate systems to filter out false solutions.
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If we start with a description of a block cipher as a system of equations of degree 2
using “many” variables, is it possible to efficiently eliminate all the auxiliary variables,
such that we end up with some low-degree equations in which the only variables are
the bits of K7

NB!

We are guaranteed that the correct key K is one solution to this system, but
restricting the degree means that we get many false keys as well.

How to solve equations after elimination
1. The general method: Enumerating the possible solutions to the final system and
"lifting" these through the intermediate systems to filter out false solutions.
2. The block cipher method: Repeating the process of variable elimination using

other known plaintext/ciphertext pairs and build up a low-degree system of
equations in only user-selected key variables that has K as a unique solution.
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The block cipher problem

If we start with a description of a block cipher as a system of equations of degree 2
using “many” variables, is it possible to efficiently eliminate all the auxiliary variables,
such that we end up with some low-degree equations in which the only variables are
the bits of K7

NB!

We are guaranteed that the correct key K is one solution to this system, but
restricting the degree means that we get many false keys as well.

How to solve equations after elimination
1. The general method: Enumerating the possible solutions to the final system and
"lifting" these through the intermediate systems to filter out false solutions.
2. The block cipher method: Repeating the process of variable elimination using
other known plaintext/ciphertext pairs and build up a low-degree system of
equations in only user-selected key variables that has K as a unique solution.

3. Low degree system <> solve by re-linearization if we have enough polynomials >
repeat elimination until by brute force is possible.
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e Trade-off: The ability to control the degree vs the ability to stay close to the
elimination ideal I N B[k + 1, n].

e Minimize complexity <+ Only consider polynomials of degree < 3 «+»
F={f1,...,f}, G={g1,-.-,9q4}, fi's have degree 3 and the g;'s degrees 2.
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Our contribution
e Trade-off: The ability to control the degree vs the ability to stay close to the
elimination ideal I N B[k + 1, n].
e Minimize complexity <> Only consider polynomials of degree < 3 <>
F={f1,...,f}, G={9g1,-..,9q4}, fi's have degree 3 and the g;'s degrees 2.
o Objective: Find as many polynomials in the ideal I(F,G) of degree < 3 as we

can <> Try to produce degree 3 or less in only key variables when applied to
block ciphers.
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Qur contribution

e Trade-off: The ability to control the degree vs the ability to stay close to the
elimination ideal I N B[k + 1, n].

e Minimize complexity <> Only consider polynomials of degree < 3 <>
F={f1,...,f}, G={9g1,-..,9q4}, fi's have degree 3 and the g;'s degrees 2.

o Objective: Find as many polynomials in the ideal I(F,G) of degree < 3 as we

can <> Try to produce degree 3 or less in only key variables when applied to
block ciphers.

— Eliminating variables while keeping degree < 3 — introduce false solutions.
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Qur contribution

e Trade-off: The ability to control the degree vs the ability to stay close to the
elimination ideal I N B[k + 1, n].

e Minimize complexity <> Only consider polynomials of degree < 3 <>
F={f1,...,f}, G={9g1,-..,9q4}, fi's have degree 3 and the g;'s degrees 2.

o Objective: Find as many polynomials in the ideal I(F,G) of degree < 3 as we
can <> Try to produce degree 3 or less in only key variables when applied to
block ciphers.

Eliminating variables while keeping degree < 3 — introduce false solutions.

o L ={1,z1,...,2n} — (L) — vector space spanned by the Boolean polynomials.
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Qur contribution

e Trade-off: The ability to control the degree vs the ability to stay close to the
elimination ideal I N B[k + 1, n].

e Minimize complexity <> Only consider polynomials of degree < 3 <>
F={f1,...,f}, G={9g1,-..,9q4}, fi's have degree 3 and the g;'s degrees 2.

o Objective: Find as many polynomials in the ideal I(F,G) of degree < 3 as we
can <> Try to produce degree 3 or less in only key variables when applied to
block ciphers.

Eliminating variables while keeping degree < 3 — introduce false solutions.
o L ={1,z1,...,2n} — (L) — vector space spanned by the Boolean polynomials.

e Eliminate variables from the vector space (F' U LG) «
LG = {lg where l € L and g € G}.
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A. Monomials containing z; are largest: Split variable

Gauss eliminate monomials containing z1 from the sets F' and GG producing
<F€01’Gzl> and (FH’GH> = (FaG> ﬂB[2,n].
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The monomial orders

A. Monomials containing z; are largest: Split variable

Gauss eliminate monomials containing z1 from the sets F' and GG producing
(Fy, Gay) and (Fap, Gap) = (F,G) N B[2,n).

B. Monomials of degree 3 are largest: Split deg 2/3

e (F'U LG) may contain more quadratic polynomials than just G.

e Produce a larger set of quadratic polynomials G*) by Gaussian elimination on
degree 3 monomials in order to try to produce some polynomials of degree 2.
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The monomial orders

A. Monomials containing z; are largest: Split variable

Gauss eliminate monomials containing z1 from the sets F' and G producing
<Fx1,Gm1> and <FH, GH) = <F’7 G) N B[Q,’I’L].

B. Monomials of degree 3 are largest: Split deg 2/3

e (F'U LG) may contain more quadratic polynomials than just G.

e Produce a larger set of quadratic polynomials G*) by Gaussian elimination on
degree 3 monomials in order to try to produce some polynomials of degree 2.

3-normal forms: Normalizing cubics with respect to quadratics
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The monomial orders

A. Monomials containing z; are largest: Split variable

Gauss eliminate monomials containing z1 from the sets F' and G producing
<Fx1,Gm1> and <FH, GE) = <}77 G) N B[Q,’I’L].

B. Monomials of degree 3 are largest: Split deg 2/3

e (F'U LG) may contain more quadratic polynomials than just G.

e Produce a larger set of quadratic polynomials G*) by Gaussian elimination on
degree 3 monomials in order to try to produce some polynomials of degree 2.

3-normal forms: Normalizing cubics with respect to quadratics

e Eliminate particular monomials containing x1 from F' using G as basis.
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The monomial orders

A. Monomials containing z; are largest: Split variable

Gauss eliminate monomials containing z1 from the sets F' and G producing
<Fx17Gm1> and <FH7 GH) = <}77 G> N B[Q,’I’L].

B. Monomials of degree 3 are largest: Split deg 2/3

e (F U LG) may contain more quadratic polynomials than just G.

o Produce a larger set of quadratic polynomials G'®) by Gaussian elimination on
degree 3 monomials in order to try to produce some polynomials of degree 2.

3-normal forms: Normalizing cubics with respect to quadratics
e Eliminate particular monomials containing x1 from F' using G as basis.

e A polynomial f € B is said to be in normal form fN°"™ with respect to G, if no
monomial in f is divisible by the leading term of any polynomial in G — Achieve
fNer™ by successively subtracting multiples of the polynomials in G.
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The monomial orders

A. Monomials containing z; are largest: Split variable

Gauss eliminate monomials containing z1 from the sets F' and G producing
<Fx17Gw1> and <FH7 GH) = <}77 G> N B[Q,n].

B. Monomials of degree 3 are largest: Split deg 2/3

e (F U LG) may contain more quadratic polynomials than just G.

o Produce a larger set of quadratic polynomials G'®) by Gaussian elimination on
degree 3 monomials in order to try to produce some polynomials of degree 2.

3-normal forms: Normalizing cubics with respect to quadratics

e Eliminate particular monomials containing x1 from F' using G as basis.

e A polynomial f € B is said to be in normal form fN°"™ with respect to G, if no

monomial in f is divisible by the leading term of any polynomial in G — Achieve
fNer™ by successively subtracting multiples of the polynomials in G.

o The effect of this procedure is that there is a rather large set of monomials
containing 1 that can not appear in the cubic polynomials output at the end.
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What is the alternative to Grébner bases?

e Resultants: Eliminate one variable from all monomials containing the targeted
variable at the time.
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What is the alternative to Grobner bases?
e Resultants: Eliminate one variable from all monomials containing the targeted
variable at the time.
e Let f =aox1 + a1 and g = box1 + b1 be two polynomials in B, where the a; and
bj are in B[2,n]. If f and g are quadratic, then ao and by will be linear, a; and
by will (in general) be quadratic.
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What is the alternative to Grébner bases?

e Resultants: Eliminate one variable from all monomials containing the targeted

variable at the time.

e Let f =aox1 + a1 and g = box1 + b1 be two polynomials in B, where the a; and
bj are in B[2,n]. If f and g are quadratic, then ao and by will be linear, a; and

by will (in general) be quadratic.
e The 2 X 2 Sylvester matrix of f and g with respect to x1

b
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What is the alternative to Grobner bases?

e Resultants: Eliminate one variable from all monomials containing the targeted
variable at the time.

e Let f =aox1 + a1 and g = box1 + b1 be two polynomials in B, where the a; and
bj are in B[2,n]. If f and g are quadratic, then ao and by will be linear, a; and
by will (in general) be quadratic.

e The 2 X 2 Sylvester matrix of f and g with respect to x1

Syl(f,g,%1) = ( o Z(l) )

ai

e The resultant of f and g with respect to x1 is a polynomial in B[2,n]:
Res(f, g,z1) = det(Syl(f, g,21)) = aob1 + a1bo = bo f + aog. Also
Res(fvg7x1) cl'= (fag) mB[Zan]

Good news

2 X 2 determinants are easy to compute, and cubic polynomials can be handled by a
computer. Also the size of n we encounter in cryptanalysis of block ciphers are within
tolerances. )

B. Greve, H.Raddum, G.Flgystad, @.Ytrehus 7/18
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Coefficient constraints and Resultant ideals

For I(F) = (fi1,..., fs) where each f; written as f; = a;xz1 + b;:
* Resz(F) = (Res(fi, fj; 1)1 <i < j < s).
e Cox(F) = (bi(a1 +1),b2(az +1),...,bs(as +1)).
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Coefficient constraints and Resultant ideals
For I(F) = (fi1,..., fs) where each f; written as f; = a;xz1 + b;:
* Resz(F) = (Res(fi, fi;21)[1 <i<j<s).
° C02(F) = (bl(al =+ 1), bz(a2 + 1), . ,bs(as =+ 1))
Theorem

Let F = {fi,..., fs} be a set of Boolean polynomials in B[1,n]. Then

I(F) N B[2,n] = Resa(F) + Cox(F).

Note: IF f; have degree d <> deg(Resz2(F) + Co2(F)) = 2d — 1.
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The LG-elim algorithm
e Replace F' with FUL - G.
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The LG-elim algorithm
e Replace F' with FUL - G.

o Gauss eliminate w.r.t degree to produce F?, F3 from F.
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The LG-elim algorithm
e Replace F' with FUL - G.
o Gauss eliminate w.r.t degree to produce F?, F3 from F.
e Split F2 and F?2 into Fﬁl,Ffl,Fg—lFf—l by Gaussian elimination on monomials
containing 1.

e Return Fj—lFS’—l
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The LG-elim algorithm
e Replace F' with FUL - G.

o Gauss eliminate w.r.t degree to produce F?, F3 from F.

Split F2 and F?3 into Fgl,Ffl,Ff—lFf—l by Gaussian elimination on monomials
containing 1.

Return Fj—lFS’—l

Repeat for F; and G; in smaller and smaller Boolean rings B[j,n].
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Main elimination algorithm: Eliminate
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Main elimination algorithm: Eliminate

e Split G into Gz, , Gz C B[2,n] by Gaussian elimination on monomials
containing =1
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Main elimination algorithm: Eliminate
e Split G into Gz, , Gz C B[2,n] by Gaussian elimination on monomials
containing =1
o If Gz, or Gz changed in last iteration, then
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Main elimination algorithm: Eliminate

e Split G into Gz, , Gz C B[2,n] by Gaussian elimination on monomials
containing =1
o If Gz, or Gz changed in last iteration, then
e Replace F' with (z1 + 1)Gz, U leﬁU F producing more cubic polynomials.
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Main elimination algorithm: Eliminate

e Split G into Gz, , Gz C B[2,n] by Gaussian elimination on monomials
containing =1
o If Gz, or Gz changed in last iteration, then

e Replace F' with (z1 + 1)Gz, U leﬁU F producing more cubic polynomials.
e Normalize F' with respect to G, to eliminate particular monomials containing x1.
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Main elimination algorithm: Eliminate

e Split G into G,, Gz C B[2,n] by Gaussian elimination on monomials
containing =1
o If Gz, or Gz changed in last iteration, then

* Replace F' with (z1 +1)Gy, Ux1G5z1 U F producing more cubic polynomials.

e Normalize F' with respect to Gz; to eliminate particular monomials containing x1.

e Produce more degree 3 relations from resultants and coefficient constraints w.r.t
z1 of Gz, and add to F.
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Main elimination algorithm: Eliminate

e Split G into G,, Gz C B[2,n] by Gaussian elimination on monomials
containing =1
o If Gz, or Gz changed in last iteration, then
* Replace F' with (z1 +1)Gy, Ux1G5z1 U F producing more cubic polynomials.
e Normalize F' with respect to Gz; to eliminate particular monomials containing x1.
e Produce more degree 3 relations from resultants and coefficient constraints w.r.t
z1 of Gz, and add to F.
e Gauss eliminate w.r.t degree to produce F2, F3 from F.
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Main elimination algorithm: Eliminate

e Split G into G,, Gz C B[2,n] by Gaussian elimination on monomials
containing =1
o If Gz, or Gz changed in last iteration, then
* Replace F' with (z1 +1)Gy, Ux1G5z1 U F producing more cubic polynomials.
e Normalize F' with respect to Gz; to eliminate particular monomials containing x1.
e Produce more degree 3 relations from resultants and coefficient constraints w.r.t
z1 of Gz, and add to F.
e Gauss eliminate w.r.t degree to produce F2, F3 from F.

e Split F2 into F§1 s Fw2_1 by Gaussian elimination on monomials containing .
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Main elimination algorithm: Eliminate

e Split G into G,, Gz C B[2,n] by Gaussian elimination on monomials
containing =1
o If Gz, or Gz changed in last iteration, then
* Replace F' with (z1 +1)Gy, Ux1G5z1 U F producing more cubic polynomials.
e Normalize F' with respect to Gz; to eliminate particular monomials containing x1.
e Produce more degree 3 relations from resultants and coefficient constraints w.r.t
z1 of Gz, and add to F.
e Gauss eliminate w.r.t degree to produce F2, F3 from F.

e Split F2 into F§1 s Fw2_1 by Gaussian elimination on monomials containing .

o Gy +— Gz U Ffl, Gz, changes if Ffl # (), causing new iteration
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Main elimination algorithm: Eliminate

e Split G into G,, Gz C B[2,n] by Gaussian elimination on monomials
containing =1
o If Gz, or Gz changed in last iteration, then
* Replace F' with (z1 +1)Gy, Ux1G5z1 U F producing more cubic polynomials.
e Normalize F' with respect to Gz; to eliminate particular monomials containing x1.
e Produce more degree 3 relations from resultants and coefficient constraints w.r.t
z1 of Gz, and add to F.
e Gauss eliminate w.r.t degree to produce F2, F3 from F.

e Split F2 into F§1 s Fw2_1 by Gaussian elimination on monomials containing .
o Gy +— Gz U Ffl, Gz, changes if Ffl # (), causing new iteration

. Gﬁ “— GEU Fz_l, Gﬁ changes if Fa?_1 # (), causing new iteration
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Main elimination algorithm: Eliminate

e Split G into G,, Gz C B[2,n] by Gaussian elimination on monomials
containing =1
o If Gz, or Gz changed in last iteration, then
* Replace F' with (z1 +1)Gy, Ux1G5z1 U F producing more cubic polynomials.
e Normalize F' with respect to Gz; to eliminate particular monomials containing x1.
e Produce more degree 3 relations from resultants and coefficient constraints w.r.t
x1 of Gz; and add to F'.
e Gauss eliminate w.r.t degree to produce F2, F'3 from F.
e Split F2 into F§1 s Fw2_1 by Gaussian elimination on monomials containing .
o Gy +— Gz U Fz21, Gz, changes if Ffl # (), causing new iteration

. Gﬁ “— GEU Fz_l, Gﬁ changes if Fa?_1 # (), causing new iteration
e Split F3 into Ffl,Ff—l by Gaussian elimination on monomials containing x; and
Return F2 Gz

x1?

B. Greve, H.Raddum, G.Flgystad, @.Ytrehus 10/18
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Remarks and Complexity
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Remarks and Complexity

e In general we have (F U LG) N B[2,n] C (F2-U LaGzy) even if we look for more
quadratic polynomials in the LG-algorithm.
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Remarks and Complexity
e In general we have (F U LG) N B[2,n] C (F2-U LaGzy) even if we look for more
quadratic polynomials in the LG-algorithm.
° ("_1) and ("_1) is the tight upper bound on the number of monomials and

<3 <2
polynomials which can occur in F' and G, respectively.
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(o1 ]

Remarks and Complexity
e In general we have (F U LG) N B[2,n] C (F2-U LaGzy) even if we look for more
quadratic polynomials in the LG-algorithm.
° ("3_31) and ("{21) is the tight upper bound on the number of monomials and
polynomials which can occur in F' and G, respectively.

e Space complexity of the algorithm is storing O(n®) monomials.
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Remarks and Complexity

e In general we have (F U LG) N B[2,n] C (F2-U LaGzy) even if we look for more
quadratic polynomials in the LG-algorithm.

° ("<_31) and ("<_21) is the tight upper bound on the number of monomials and

polynomials which can occur in F' and G, respectively.
e Space complexity of the algorithm is storing O(n®) monomials.

e The time complexity is dominated by the linear algebra done in SplitDeg2/3 and
SplitVariable. In the worst case, we have input size O(n3) in both polynomials
and monomials, so the matrices constructed are of size O(n®) x O(n®). This
leads to O(n?) for the Gaussian reduction.
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The (Reduced) LowMC cipher
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°
14 quadratic equations 14 quadratic equations
{ C
w - x (XoXs) =] [ Xes b)) = 1
P w1 — § )(s: 00,.000) — § | xas \Eﬁ,..} =0
0 Xo+1 —| — Xa¢ . [— %1 .
1 | - [ 160, Xa4)
! b * 10401 X04)
. . . I(%0....Xa1)
: Xo . . 10X0,.. Xa1) . -
I : . e B : fhe0
. . [
x;| 1(Xo,...Xa1) ) . X
Ko | et G R K™ i =0

The (Reduced) LowMC cipher

e Uses a 3 x 3 S-box — 14 quadratic polynomials describe S-box — S-boxes do
not cover the whole state — part of the cipher block is not affected by the S-box
layer.
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The (Reduced) LowMC cipher
e Uses a 3 x 3 S-box — 14 quadratic polynomials describe S-box — S-boxes do
not cover the whole state — part of the cipher block is not affected by the S-box
layer.
e Cipher parameters used: Block size: 24 bits, Key size: 32 bits, 1 S-box per
round, 12/13 rounds.
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Experimental results

e Eliminate all variables z; for ¢ > 32 — Find some polynomials of degree at most
3, only in zo, ..., x31.
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Experimental results

e Eliminate all variables z; for i > 32 — Find some polynomials of degree at most
3, only in zo, ..., x31.
e 12 rounds: 44 variables, F' = (), |G| = 168.

e LG — elim: Produces 1-2 cubic polynomial(s) only in key variables. Memory
requirement: Store 7560 polynomials from G - L.
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Experimental results

e Eliminate all variables z; for i > 32 — Find some polynomials of degree at most
3, only in zo, ..., x31.
e 12 rounds: 44 variables, F' = (), |G| = 168.
e LG — elim: Produces 1-2 cubic polynomial(s) only in key variables. Memory
requirement: Store 7560 polynomials from G - L.
o eliminate: Produce same polynomials as LG — elim. Size of F' never above 2000

polynomials <> eliminate has less space complexity than LG — elim. Running
time: Roughly the same.
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Experimental results

e Eliminate all variables z; for i > 32 — Find some polynomials of degree at most
3, only in zo, ..., x31.
e 12 rounds: 44 variables, F' = (), |G| = 168.

e LG — elim: Produces 1-2 cubic polynomial(s) only in key variables. Memory
requirement: Store 7560 polynomials from G - L.

o eliminate: Produce same polynomials as LG — elim. Size of F' never above 2000
polynomials <> eliminate has less space complexity than LG — elim. Running
time: Roughly the same.

o 15 different systems using different p/c-pairs — 20 cubic polynomials in only key
bits — Seems that we can produce many independent polynomials from different

p/c-pairs.

Other results
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Experimental results

e Eliminate all variables z; for i > 32 — Find some polynomials of degree at most
3, only in zo, ..., x31.
e 12 rounds: 44 variables, F' = (), |G| = 168.

e LG — elim: Produces 1-2 cubic polynomial(s) only in key variables. Memory
requirement: Store 7560 polynomials from G - L.

o eliminate: Produce same polynomials as LG — elim. Size of F' never above 2000
polynomials <> eliminate has less space complexity than LG — elim. Running
time: Roughly the same.

o 15 different systems using different p/c-pairs — 20 cubic polynomials in only key
bits — Seems that we can produce many independent polynomials from different

p/c-pairs.

Other results
o Checking for linear dependencies among 20 cubic polynomials we produced five
linear polynomials in only key bits <> Need much fewer polynomials than
expected to find the values of xo, ..., x31.
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Experimental results

e Eliminate all variables z; for i > 32 — Find some polynomials of degree at most
3, only in zo, ..., x31.
e 12 rounds: 44 variables, F' = (), |G| = 168.

e LG — elim: Produces 1-2 cubic polynomial(s) only in key variables. Memory
requirement: Store 7560 polynomials from G - L.

o eliminate: Produce same polynomials as LG — elim. Size of F' never above 2000
polynomials <> eliminate has less space complexity than LG — elim. Running
time: Roughly the same.

o 15 different systems using different p/c-pairs — 20 cubic polynomials in only key
bits — Seems that we can produce many independent polynomials from different
p/c-pairs.

Other results

o Checking for linear dependencies among 20 cubic polynomials we produced five
linear polynomials in only key bits <> Need much fewer polynomials than
expected to find the values of xo, ..., x31.

e 13 rounds: 47 variables, F = (), |G| = 182. For the 13-round systems we tried,
neither LG — elim or eliminate found any cubic polynomials in only key
variables — Only up to 12 rounds may be attacked using techniques.
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21 quadratic equations 21 quadratic equations

The toy cipher

o Uses four 4 X 4 S-boxes (the same S-box as used in PRINCE) — Use same key in
every round.
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0®0000

21 quadratic equations 21 quadratic equations

The toy cipher
o Uses four 4 X 4 S-boxes (the same S-box as used in PRINCE) — Use same key in
every round.
o Cipher parameters used: Block size: 16-bit, key size: 16-bit — Used a 4-round
version of Cipher.
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Experimental results

o Eliminate all non-key variables g, . . ., z¢3 from the system — Find some
polynomials of degree at most 3 only in zo,...,Z15.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Flgystad, @.Ytrehus 15/18



Experimental results Simul@j | b

000000

Experimental results

o Eliminate all non-key variables g, . . ., z¢3 from the system — Find some
polynomials of degree at most 3 only in zo,...,Z15.
e 4 rounds: 64 variables, F = ), |G| = 336

e None of LG — elim or eliminate were able to find any cubic polynomial in only
key variables.

Information loss
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Experimental results

e Eliminate all non-key variables x1¢, . .., xs3 from the system — Find some
polynomials of degree at most 3 only in zo,...,Z15.
e 4 rounds: 64 variables, F' = 0, |G| = 336

e None of LG — elim or eliminate were able to find any cubic polynomial in only
key variables.

Information loss

e Running LG — elim/eliminate — Throw away polynomials giving constraints on
the solution space Introduce false solutions.
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Experimental results

e Eliminate all non-key variables x1¢, . .., xs3 from the system — Find some
polynomials of degree at most 3 only in zo,...,Z15.
e 4 rounds: 64 variables, F' = 0, |G| = 336

e None of LG — elim or eliminate were able to find any cubic polynomial in only
key variables.

Information loss

e Running LG — elim/eliminate — Throw away polynomials giving constraints on
the solution space Introduce false solutions.

e FF=( and G = () — all solutions are valid — "Lost all information about the
possible solutions to the original equation system™.
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Experimental results
e Eliminate all non-key variables x1¢, . .., xs3 from the system — Find some
polynomials of degree at most 3 only in xo,...,Z15.
e 4 rounds: 64 variables, F' = 0, |G| = 336

e None of LG — elim or eliminate were able to find any cubic polynomial in only
key variables.

Information loss
e Running LG — elim/eliminate — Throw away polynomials giving constraints on
the solution space Introduce false solutions.
e FF=0 and G = () — all solutions are valid — "Lost all information about the
possible solutions to the original equation system”.
e Measure how fast the information about the solutions we seek disappear for the
toy cipher.
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Experimental results
e Eliminate all non-key variables x1¢, . .., xs3 from the system — Find some
polynomials of degree at most 3 only in xo,...,Z15.

e 4 rounds: 64 variables, F' =0, |G| = 336

e None of LG — elim or eliminate were able to find any cubic polynomial in only

key variables.

Information loss

e Running LG — elim/eliminate — Throw away polynomials giving constraints on

the solution space Introduce false solutions.

e FF=( and G = () — all solutions are valid — "Lost all information about the
possible solutions to the original equation system”.

e Measure how fast the information about the solutions we seek disappear for the

toy cipher.

e With only a 16-bit key it is possible to do exhaustive search — Check which key

values that fit in any of the equation systems we get after eliminating some

variables.
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e The amount of information a system S has about the key:
1(S) = 16 — loga2(# of keys that fit in S). S, is the system after eliminating v
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The information loss experiment

o Eliminate variables distributed evenly throughout the system — Check how many
keys fits in the given system after each elimination — Gives information on how
much information the system has about the unknown secret key.

e The amount of information a system S has about the key:
1(S) = 16 — loga2(# of keys that fit in S). S, is the system after eliminating v
variables.

e For the plaintext/ciphertext pair we used there were three keys that fit in the
initial system > i(So) ~ 14.42.

e What is the rate of information loss during elimination?
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— min infa — max info

Bits of information on key remaining in system
®

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Variables eliminated

Figure: ¢(Sy) for 0 < v < 31
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What this tells us
e For the Toy cipher it is possible to construct a cubic equation system, with the
same information on the key, with only k + (n — k)/2 variables where k is the
number of key bits — Trade-off between degree and number of variables needed

to describe a cipher.
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e For the Toy cipher it is possible to construct a cubic equation system, with the
same information on the key, with only k + (n — k)/2 variables where k is the
number of key bits — Trade-off between degree and number of variables needed
to describe a cipher.

o |.e: For the toy cipher, increasing the degree by one allows to cut the number of
non-key variables in half to describe the same cipher.
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e For the Toy cipher it is possible to construct a cubic equation system, with the
same information on the key, with only k + (n — k)/2 variables where k is the
number of key bits — Trade-off between degree and number of variables needed
to describe a cipher.

o |.e: For the toy cipher, increasing the degree by one allows to cut the number of
non-key variables in half to describe the same cipher.

Open questions

o Attacks on other ciphers? When does the algorithm work and not?
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What this tells us

e For the Toy cipher it is possible to construct a cubic equation system, with the
same information on the key, with only k + (n — k)/2 variables where k is the
number of key bits — Trade-off between degree and number of variables needed
to describe a cipher.

o |.e: For the toy cipher, increasing the degree by one allows to cut the number of
non-key variables in half to describe the same cipher.

Open questions
o Attacks on other ciphers? When does the algorithm work and not?

o Generalizations of elimination algorithm?
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