
Eliminating variables in Boolean equation systems

Bjørn Møller Greve1,2 Håvard Raddum2 Gunnar Fløystad3 Øyvind Ytrehus2

1Norwegian Defence Research Establishment

2Simula@UiB

3Dept. of Mathematics, UiB

July 5, 2017

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Boolean functions
• B[1, n] = F2[x1, . . . , xn]/(x2

i + xi|i = 1, . . . , n)
• Set of Boolean equations F = {f1, . . . , fs} in B[1, n] ↔ F generate an ideal
I(F) = (f1, . . . , fs), with zero set
Z(I(F)) = {a ∈ Fn

2 |f(a) = 0 for every f ∈ I(F)}.

Elimination of variables from Boolean functions
• Objective: Given I(F) ⊂ B[1, n] we want to find I ′(F) ⊂ B[2, n] s.th
Z(I ′(F)) = π1(Z(I(F))) ↔ Compute J ⊂ I ′(F) as large as possible given
computational restrictions.

• In general: We can eliminate more variables in the same fashion → k’th
elimination ideal I(F) ∩B[k + 1, n].

• Without loss of generality we eliminate variables in the order x1, x2, . . . , xn.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 1 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Boolean functions
• B[1, n] = F2[x1, . . . , xn]/(x2

i + xi|i = 1, . . . , n)
• Set of Boolean equations F = {f1, . . . , fs} in B[1, n] ↔ F generate an ideal
I(F) = (f1, . . . , fs), with zero set
Z(I(F)) = {a ∈ Fn

2 |f(a) = 0 for every f ∈ I(F)}.

Elimination of variables from Boolean functions
• Objective: Given I(F) ⊂ B[1, n] we want to find I ′(F) ⊂ B[2, n] s.th
Z(I ′(F)) = π1(Z(I(F))) ↔ Compute J ⊂ I ′(F) as large as possible given
computational restrictions.

• In general: We can eliminate more variables in the same fashion → k’th
elimination ideal I(F) ∩B[k + 1, n].

• Without loss of generality we eliminate variables in the order x1, x2, . . . , xn.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 1 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Boolean functions
• B[1, n] = F2[x1, . . . , xn]/(x2

i + xi|i = 1, . . . , n)
• Set of Boolean equations F = {f1, . . . , fs} in B[1, n] ↔ F generate an ideal
I(F) = (f1, . . . , fs), with zero set
Z(I(F)) = {a ∈ Fn

2 |f(a) = 0 for every f ∈ I(F)}.

Elimination of variables from Boolean functions
• Objective: Given I(F) ⊂ B[1, n] we want to find I ′(F) ⊂ B[2, n] s.th
Z(I ′(F)) = π1(Z(I(F))) ↔ Compute J ⊂ I ′(F) as large as possible given
computational restrictions.

• In general: We can eliminate more variables in the same fashion → k’th
elimination ideal I(F) ∩B[k + 1, n].

• Without loss of generality we eliminate variables in the order x1, x2, . . . , xn.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 1 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Boolean functions
• B[1, n] = F2[x1, . . . , xn]/(x2

i + xi|i = 1, . . . , n)
• Set of Boolean equations F = {f1, . . . , fs} in B[1, n] ↔ F generate an ideal
I(F) = (f1, . . . , fs), with zero set
Z(I(F)) = {a ∈ Fn

2 |f(a) = 0 for every f ∈ I(F)}.

Elimination of variables from Boolean functions
• Objective: Given I(F) ⊂ B[1, n] we want to find I ′(F) ⊂ B[2, n] s.th
Z(I ′(F)) = π1(Z(I(F))) ↔ Compute J ⊂ I ′(F) as large as possible given
computational restrictions.

• In general: We can eliminate more variables in the same fashion → k’th
elimination ideal I(F) ∩B[k + 1, n].

• Without loss of generality we eliminate variables in the order x1, x2, . . . , xn.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 1 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Boolean functions
• B[1, n] = F2[x1, . . . , xn]/(x2

i + xi|i = 1, . . . , n)
• Set of Boolean equations F = {f1, . . . , fs} in B[1, n] ↔ F generate an ideal
I(F) = (f1, . . . , fs), with zero set
Z(I(F)) = {a ∈ Fn

2 |f(a) = 0 for every f ∈ I(F)}.

Elimination of variables from Boolean functions
• Objective: Given I(F) ⊂ B[1, n] we want to find I ′(F) ⊂ B[2, n] s.th
Z(I ′(F)) = π1(Z(I(F))) ↔ Compute J ⊂ I ′(F) as large as possible given
computational restrictions.

• In general: We can eliminate more variables in the same fashion → k’th
elimination ideal I(F) ∩B[k + 1, n].

• Without loss of generality we eliminate variables in the order x1, x2, . . . , xn.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 1 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Boolean functions
• B[1, n] = F2[x1, . . . , xn]/(x2

i + xi|i = 1, . . . , n)
• Set of Boolean equations F = {f1, . . . , fs} in B[1, n] ↔ F generate an ideal
I(F) = (f1, . . . , fs), with zero set
Z(I(F)) = {a ∈ Fn

2 |f(a) = 0 for every f ∈ I(F)}.

Elimination of variables from Boolean functions
• Objective: Given I(F) ⊂ B[1, n] we want to find I ′(F) ⊂ B[2, n] s.th
Z(I ′(F)) = π1(Z(I(F))) ↔ Compute J ⊂ I ′(F) as large as possible given
computational restrictions.

• In general: We can eliminate more variables in the same fashion → k’th
elimination ideal I(F) ∩B[k + 1, n].

• Without loss of generality we eliminate variables in the order x1, x2, . . . , xn.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 1 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The Elimination Theorem

Theorem
If G(F) is a Gröbner basis for the ideal I(F) with respect to the (lex) order
x1 > x2 > · · · > xn, then

Gk(F) = G(F) ∩B[k + 1, n]

is a Gröbner basis of the k’th elimination ideal Ik(F).

Computes the full elimination ideal
Preserves all ”exact” solutions of the original system

1. We have to compute the full Gröbner basis before elimination.
2. Eliminates one monomial at the time.
3. Gröbner bases are hard to compute → high complexity (All possible degrees)

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 2 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The Elimination Theorem

Theorem
If G(F) is a Gröbner basis for the ideal I(F) with respect to the (lex) order
x1 > x2 > · · · > xn, then

Gk(F) = G(F) ∩B[k + 1, n]

is a Gröbner basis of the k’th elimination ideal Ik(F).

Computes the full elimination ideal
Preserves all ”exact” solutions of the original system

1. We have to compute the full Gröbner basis before elimination.
2. Eliminates one monomial at the time.
3. Gröbner bases are hard to compute → high complexity (All possible degrees)

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 2 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The Elimination Theorem

Theorem
If G(F) is a Gröbner basis for the ideal I(F) with respect to the (lex) order
x1 > x2 > · · · > xn, then

Gk(F) = G(F) ∩B[k + 1, n]

is a Gröbner basis of the k’th elimination ideal Ik(F).

Computes the full elimination ideal
Preserves all ”exact” solutions of the original system

1. We have to compute the full Gröbner basis before elimination.
2. Eliminates one monomial at the time.
3. Gröbner bases are hard to compute → high complexity (All possible degrees)

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 2 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The Elimination Theorem

Theorem
If G(F) is a Gröbner basis for the ideal I(F) with respect to the (lex) order
x1 > x2 > · · · > xn, then

Gk(F) = G(F) ∩B[k + 1, n]

is a Gröbner basis of the k’th elimination ideal Ik(F).

Computes the full elimination ideal
Preserves all ”exact” solutions of the original system

1. We have to compute the full Gröbner basis before elimination.
2. Eliminates one monomial at the time.
3. Gröbner bases are hard to compute → high complexity (All possible degrees)

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 2 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The Elimination Theorem

Theorem
If G(F) is a Gröbner basis for the ideal I(F) with respect to the (lex) order
x1 > x2 > · · · > xn, then

Gk(F) = G(F) ∩B[k + 1, n]

is a Gröbner basis of the k’th elimination ideal Ik(F).

Computes the full elimination ideal
Preserves all ”exact” solutions of the original system

1. We have to compute the full Gröbner basis before elimination.
2. Eliminates one monomial at the time.
3. Gröbner bases are hard to compute → high complexity (All possible degrees)

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 2 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Symmetric cryptography
• Defined over the binary field GF (2) → block encryption algorithms EK(P) = C

takes a fixed length plaintext P and a secret key K as inputs, and produces a
ciphertext C.

• Divides the data into blocks of fixed size, and then encrypting each block
separately. The encryption usually consists of iterating a round function,
consisting of suitable linear and nonlinear transformations

• A known plaintext attack: Assume both P and C are known. Objective: Extract
the secret key K.

Boolean functions in cryptography
Ciphers defined over GF (2) can always be described as a system of Boolean
equations of degree 2 → introduce enough auxiliary variables → Solving this system
of equations w.r.t K: Algebraic cryptanalysis.

• The bits of the cipher states during encryption can always be described as
polynomials in the user-selected key!

• Over multiple rounds in a block cipher algorithm, the degree of the polynomials
in only user-selected key bits grow fast, making the equations hard to solve.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 3 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Symmetric cryptography
• Defined over the binary field GF (2) → block encryption algorithms EK(P) = C

takes a fixed length plaintext P and a secret key K as inputs, and produces a
ciphertext C.

• Divides the data into blocks of fixed size, and then encrypting each block
separately. The encryption usually consists of iterating a round function,
consisting of suitable linear and nonlinear transformations

• A known plaintext attack: Assume both P and C are known. Objective: Extract
the secret key K.

Boolean functions in cryptography
Ciphers defined over GF (2) can always be described as a system of Boolean
equations of degree 2 → introduce enough auxiliary variables → Solving this system
of equations w.r.t K: Algebraic cryptanalysis.

• The bits of the cipher states during encryption can always be described as
polynomials in the user-selected key!

• Over multiple rounds in a block cipher algorithm, the degree of the polynomials
in only user-selected key bits grow fast, making the equations hard to solve.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 3 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Symmetric cryptography
• Defined over the binary field GF (2) → block encryption algorithms EK(P) = C

takes a fixed length plaintext P and a secret key K as inputs, and produces a
ciphertext C.

• Divides the data into blocks of fixed size, and then encrypting each block
separately. The encryption usually consists of iterating a round function,
consisting of suitable linear and nonlinear transformations

• A known plaintext attack: Assume both P and C are known. Objective: Extract
the secret key K.

Boolean functions in cryptography
Ciphers defined over GF (2) can always be described as a system of Boolean
equations of degree 2 → introduce enough auxiliary variables → Solving this system
of equations w.r.t K: Algebraic cryptanalysis.

• The bits of the cipher states during encryption can always be described as
polynomials in the user-selected key!

• Over multiple rounds in a block cipher algorithm, the degree of the polynomials
in only user-selected key bits grow fast, making the equations hard to solve.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 3 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Symmetric cryptography
• Defined over the binary field GF (2) → block encryption algorithms EK(P) = C

takes a fixed length plaintext P and a secret key K as inputs, and produces a
ciphertext C.

• Divides the data into blocks of fixed size, and then encrypting each block
separately. The encryption usually consists of iterating a round function,
consisting of suitable linear and nonlinear transformations

• A known plaintext attack: Assume both P and C are known. Objective: Extract
the secret key K.

Boolean functions in cryptography
Ciphers defined over GF (2) can always be described as a system of Boolean
equations of degree 2 → introduce enough auxiliary variables → Solving this system
of equations w.r.t K: Algebraic cryptanalysis.

• The bits of the cipher states during encryption can always be described as
polynomials in the user-selected key!

• Over multiple rounds in a block cipher algorithm, the degree of the polynomials
in only user-selected key bits grow fast, making the equations hard to solve.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 3 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Symmetric cryptography
• Defined over the binary field GF (2) → block encryption algorithms EK(P) = C

takes a fixed length plaintext P and a secret key K as inputs, and produces a
ciphertext C.

• Divides the data into blocks of fixed size, and then encrypting each block
separately. The encryption usually consists of iterating a round function,
consisting of suitable linear and nonlinear transformations

• A known plaintext attack: Assume both P and C are known. Objective: Extract
the secret key K.

Boolean functions in cryptography
Ciphers defined over GF (2) can always be described as a system of Boolean
equations of degree 2 → introduce enough auxiliary variables → Solving this system
of equations w.r.t K: Algebraic cryptanalysis.

• The bits of the cipher states during encryption can always be described as
polynomials in the user-selected key!

• Over multiple rounds in a block cipher algorithm, the degree of the polynomials
in only user-selected key bits grow fast, making the equations hard to solve.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 3 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Symmetric cryptography
• Defined over the binary field GF (2) → block encryption algorithms EK(P) = C

takes a fixed length plaintext P and a secret key K as inputs, and produces a
ciphertext C.

• Divides the data into blocks of fixed size, and then encrypting each block
separately. The encryption usually consists of iterating a round function,
consisting of suitable linear and nonlinear transformations

• A known plaintext attack: Assume both P and C are known. Objective: Extract
the secret key K.

Boolean functions in cryptography
Ciphers defined over GF (2) can always be described as a system of Boolean
equations of degree 2 → introduce enough auxiliary variables → Solving this system
of equations w.r.t K: Algebraic cryptanalysis.

• The bits of the cipher states during encryption can always be described as
polynomials in the user-selected key!

• Over multiple rounds in a block cipher algorithm, the degree of the polynomials
in only user-selected key bits grow fast, making the equations hard to solve.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 3 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Symmetric cryptography
• Defined over the binary field GF (2) → block encryption algorithms EK(P) = C

takes a fixed length plaintext P and a secret key K as inputs, and produces a
ciphertext C.

• Divides the data into blocks of fixed size, and then encrypting each block
separately. The encryption usually consists of iterating a round function,
consisting of suitable linear and nonlinear transformations

• A known plaintext attack: Assume both P and C are known. Objective: Extract
the secret key K.

Boolean functions in cryptography
Ciphers defined over GF (2) can always be described as a system of Boolean
equations of degree 2 → introduce enough auxiliary variables → Solving this system
of equations w.r.t K: Algebraic cryptanalysis.

• The bits of the cipher states during encryption can always be described as
polynomials in the user-selected key!

• Over multiple rounds in a block cipher algorithm, the degree of the polynomials
in only user-selected key bits grow fast, making the equations hard to solve.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 3 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The block cipher problem
If we start with a description of a block cipher as a system of equations of degree 2
using “many” variables, is it possible to efficiently eliminate all the auxiliary variables,
such that we end up with some low-degree equations in which the only variables are
the bits of K?

NB!
We are guaranteed that the correct key K is one solution to this system, but
restricting the degree means that we get many false keys as well.

How to solve equations after elimination
1. The general method: Enumerating the possible solutions to the final system and

”lifting” these through the intermediate systems to filter out false solutions.
2. The block cipher method: Repeating the process of variable elimination using

other known plaintext/ciphertext pairs and build up a low-degree system of
equations in only user-selected key variables that has K as a unique solution.

3. Low degree system ↔ solve by re-linearization if we have enough polynomials ↔
repeat elimination until by brute force is possible.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 4 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The block cipher problem
If we start with a description of a block cipher as a system of equations of degree 2
using “many” variables, is it possible to efficiently eliminate all the auxiliary variables,
such that we end up with some low-degree equations in which the only variables are
the bits of K?

NB!
We are guaranteed that the correct key K is one solution to this system, but
restricting the degree means that we get many false keys as well.

How to solve equations after elimination
1. The general method: Enumerating the possible solutions to the final system and

”lifting” these through the intermediate systems to filter out false solutions.
2. The block cipher method: Repeating the process of variable elimination using

other known plaintext/ciphertext pairs and build up a low-degree system of
equations in only user-selected key variables that has K as a unique solution.

3. Low degree system ↔ solve by re-linearization if we have enough polynomials ↔
repeat elimination until by brute force is possible.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 4 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The block cipher problem
If we start with a description of a block cipher as a system of equations of degree 2
using “many” variables, is it possible to efficiently eliminate all the auxiliary variables,
such that we end up with some low-degree equations in which the only variables are
the bits of K?

NB!
We are guaranteed that the correct key K is one solution to this system, but
restricting the degree means that we get many false keys as well.

How to solve equations after elimination
1. The general method: Enumerating the possible solutions to the final system and

”lifting” these through the intermediate systems to filter out false solutions.
2. The block cipher method: Repeating the process of variable elimination using

other known plaintext/ciphertext pairs and build up a low-degree system of
equations in only user-selected key variables that has K as a unique solution.

3. Low degree system ↔ solve by re-linearization if we have enough polynomials ↔
repeat elimination until by brute force is possible.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 4 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The block cipher problem
If we start with a description of a block cipher as a system of equations of degree 2
using “many” variables, is it possible to efficiently eliminate all the auxiliary variables,
such that we end up with some low-degree equations in which the only variables are
the bits of K?

NB!
We are guaranteed that the correct key K is one solution to this system, but
restricting the degree means that we get many false keys as well.

How to solve equations after elimination
1. The general method: Enumerating the possible solutions to the final system and

”lifting” these through the intermediate systems to filter out false solutions.
2. The block cipher method: Repeating the process of variable elimination using

other known plaintext/ciphertext pairs and build up a low-degree system of
equations in only user-selected key variables that has K as a unique solution.

3. Low degree system ↔ solve by re-linearization if we have enough polynomials ↔
repeat elimination until by brute force is possible.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 4 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The block cipher problem
If we start with a description of a block cipher as a system of equations of degree 2
using “many” variables, is it possible to efficiently eliminate all the auxiliary variables,
such that we end up with some low-degree equations in which the only variables are
the bits of K?

NB!
We are guaranteed that the correct key K is one solution to this system, but
restricting the degree means that we get many false keys as well.

How to solve equations after elimination
1. The general method: Enumerating the possible solutions to the final system and

”lifting” these through the intermediate systems to filter out false solutions.
2. The block cipher method: Repeating the process of variable elimination using

other known plaintext/ciphertext pairs and build up a low-degree system of
equations in only user-selected key variables that has K as a unique solution.

3. Low degree system ↔ solve by re-linearization if we have enough polynomials ↔
repeat elimination until by brute force is possible.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 4 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The block cipher problem
If we start with a description of a block cipher as a system of equations of degree 2
using “many” variables, is it possible to efficiently eliminate all the auxiliary variables,
such that we end up with some low-degree equations in which the only variables are
the bits of K?

NB!
We are guaranteed that the correct key K is one solution to this system, but
restricting the degree means that we get many false keys as well.

How to solve equations after elimination
1. The general method: Enumerating the possible solutions to the final system and

”lifting” these through the intermediate systems to filter out false solutions.
2. The block cipher method: Repeating the process of variable elimination using

other known plaintext/ciphertext pairs and build up a low-degree system of
equations in only user-selected key variables that has K as a unique solution.

3. Low degree system ↔ solve by re-linearization if we have enough polynomials ↔
repeat elimination until by brute force is possible.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 4 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Our contribution
• Trade-off: The ability to control the degree vs the ability to stay close to the

elimination ideal I ∩B[k + 1, n].
• Minimize complexity ↔ Only consider polynomials of degree ≤ 3 ↔
F = {f1, . . . , fc}, G = {g1, . . . , gq}, fi’s have degree 3 and the gi’s degrees 2.

• Objective: Find as many polynomials in the ideal I(F,G) of degree ≤ 3 as we
can ↔ Try to produce degree 3 or less in only key variables when applied to
block ciphers.
Eliminating variables while keeping degree ≤ 3 → introduce false solutions.

• L = {1, x1, . . . , xn} → 〈L〉 → vector space spanned by the Boolean polynomials.
• Eliminate variables from the vector space 〈F ∪ LG〉 ↔
LG = {lg where l ∈ L and g ∈ G}.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 5 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Our contribution
• Trade-off: The ability to control the degree vs the ability to stay close to the

elimination ideal I ∩B[k + 1, n].
• Minimize complexity ↔ Only consider polynomials of degree ≤ 3 ↔
F = {f1, . . . , fc}, G = {g1, . . . , gq}, fi’s have degree 3 and the gi’s degrees 2.

• Objective: Find as many polynomials in the ideal I(F,G) of degree ≤ 3 as we
can ↔ Try to produce degree 3 or less in only key variables when applied to
block ciphers.
Eliminating variables while keeping degree ≤ 3 → introduce false solutions.

• L = {1, x1, . . . , xn} → 〈L〉 → vector space spanned by the Boolean polynomials.
• Eliminate variables from the vector space 〈F ∪ LG〉 ↔
LG = {lg where l ∈ L and g ∈ G}.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 5 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Our contribution
• Trade-off: The ability to control the degree vs the ability to stay close to the

elimination ideal I ∩B[k + 1, n].
• Minimize complexity ↔ Only consider polynomials of degree ≤ 3 ↔
F = {f1, . . . , fc}, G = {g1, . . . , gq}, fi’s have degree 3 and the gi’s degrees 2.

• Objective: Find as many polynomials in the ideal I(F,G) of degree ≤ 3 as we
can ↔ Try to produce degree 3 or less in only key variables when applied to
block ciphers.
Eliminating variables while keeping degree ≤ 3 → introduce false solutions.

• L = {1, x1, . . . , xn} → 〈L〉 → vector space spanned by the Boolean polynomials.
• Eliminate variables from the vector space 〈F ∪ LG〉 ↔
LG = {lg where l ∈ L and g ∈ G}.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 5 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Our contribution
• Trade-off: The ability to control the degree vs the ability to stay close to the

elimination ideal I ∩B[k + 1, n].
• Minimize complexity ↔ Only consider polynomials of degree ≤ 3 ↔
F = {f1, . . . , fc}, G = {g1, . . . , gq}, fi’s have degree 3 and the gi’s degrees 2.

• Objective: Find as many polynomials in the ideal I(F,G) of degree ≤ 3 as we
can ↔ Try to produce degree 3 or less in only key variables when applied to
block ciphers.
Eliminating variables while keeping degree ≤ 3 → introduce false solutions.

• L = {1, x1, . . . , xn} → 〈L〉 → vector space spanned by the Boolean polynomials.
• Eliminate variables from the vector space 〈F ∪ LG〉 ↔
LG = {lg where l ∈ L and g ∈ G}.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 5 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Our contribution
• Trade-off: The ability to control the degree vs the ability to stay close to the

elimination ideal I ∩B[k + 1, n].
• Minimize complexity ↔ Only consider polynomials of degree ≤ 3 ↔
F = {f1, . . . , fc}, G = {g1, . . . , gq}, fi’s have degree 3 and the gi’s degrees 2.

• Objective: Find as many polynomials in the ideal I(F,G) of degree ≤ 3 as we
can ↔ Try to produce degree 3 or less in only key variables when applied to
block ciphers.
Eliminating variables while keeping degree ≤ 3 → introduce false solutions.

• L = {1, x1, . . . , xn} → 〈L〉 → vector space spanned by the Boolean polynomials.
• Eliminate variables from the vector space 〈F ∪ LG〉 ↔
LG = {lg where l ∈ L and g ∈ G}.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 5 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Our contribution
• Trade-off: The ability to control the degree vs the ability to stay close to the

elimination ideal I ∩B[k + 1, n].
• Minimize complexity ↔ Only consider polynomials of degree ≤ 3 ↔
F = {f1, . . . , fc}, G = {g1, . . . , gq}, fi’s have degree 3 and the gi’s degrees 2.

• Objective: Find as many polynomials in the ideal I(F,G) of degree ≤ 3 as we
can ↔ Try to produce degree 3 or less in only key variables when applied to
block ciphers.
Eliminating variables while keeping degree ≤ 3 → introduce false solutions.

• L = {1, x1, . . . , xn} → 〈L〉 → vector space spanned by the Boolean polynomials.
• Eliminate variables from the vector space 〈F ∪ LG〉 ↔
LG = {lg where l ∈ L and g ∈ G}.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 5 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Our contribution
• Trade-off: The ability to control the degree vs the ability to stay close to the

elimination ideal I ∩B[k + 1, n].
• Minimize complexity ↔ Only consider polynomials of degree ≤ 3 ↔
F = {f1, . . . , fc}, G = {g1, . . . , gq}, fi’s have degree 3 and the gi’s degrees 2.

• Objective: Find as many polynomials in the ideal I(F,G) of degree ≤ 3 as we
can ↔ Try to produce degree 3 or less in only key variables when applied to
block ciphers.
Eliminating variables while keeping degree ≤ 3 → introduce false solutions.

• L = {1, x1, . . . , xn} → 〈L〉 → vector space spanned by the Boolean polynomials.
• Eliminate variables from the vector space 〈F ∪ LG〉 ↔
LG = {lg where l ∈ L and g ∈ G}.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 5 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The monomial orders
A. Monomials containing x1 are largest: Split variable
Gauss eliminate monomials containing x1 from the sets F and G producing
〈Fx1 , Gx1〉 and 〈Fx1 , Gx1〉 = 〈F,G〉 ∩B[2, n].

B. Monomials of degree 3 are largest: Split deg 2/3
• 〈F ∪ LG〉 may contain more quadratic polynomials than just G.
• Produce a larger set of quadratic polynomials G(2) by Gaussian elimination on

degree 3 monomials in order to try to produce some polynomials of degree 2.

3-normal forms: Normalizing cubics with respect to quadratics
• Eliminate particular monomials containing x1 from F using G as basis.
• A polynomial f ∈ B is said to be in normal form fNorm with respect to G, if no

monomial in f is divisible by the leading term of any polynomial in G → Achieve
fNorm by successively subtracting multiples of the polynomials in G.

• The effect of this procedure is that there is a rather large set of monomials
containing x1 that can not appear in the cubic polynomials output at the end.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 6 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The monomial orders
A. Monomials containing x1 are largest: Split variable
Gauss eliminate monomials containing x1 from the sets F and G producing
〈Fx1 , Gx1〉 and 〈Fx1 , Gx1〉 = 〈F,G〉 ∩B[2, n].

B. Monomials of degree 3 are largest: Split deg 2/3
• 〈F ∪ LG〉 may contain more quadratic polynomials than just G.
• Produce a larger set of quadratic polynomials G(2) by Gaussian elimination on

degree 3 monomials in order to try to produce some polynomials of degree 2.

3-normal forms: Normalizing cubics with respect to quadratics
• Eliminate particular monomials containing x1 from F using G as basis.
• A polynomial f ∈ B is said to be in normal form fNorm with respect to G, if no

monomial in f is divisible by the leading term of any polynomial in G → Achieve
fNorm by successively subtracting multiples of the polynomials in G.

• The effect of this procedure is that there is a rather large set of monomials
containing x1 that can not appear in the cubic polynomials output at the end.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 6 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The monomial orders
A. Monomials containing x1 are largest: Split variable
Gauss eliminate monomials containing x1 from the sets F and G producing
〈Fx1 , Gx1〉 and 〈Fx1 , Gx1〉 = 〈F,G〉 ∩B[2, n].

B. Monomials of degree 3 are largest: Split deg 2/3
• 〈F ∪ LG〉 may contain more quadratic polynomials than just G.
• Produce a larger set of quadratic polynomials G(2) by Gaussian elimination on

degree 3 monomials in order to try to produce some polynomials of degree 2.

3-normal forms: Normalizing cubics with respect to quadratics
• Eliminate particular monomials containing x1 from F using G as basis.
• A polynomial f ∈ B is said to be in normal form fNorm with respect to G, if no

monomial in f is divisible by the leading term of any polynomial in G → Achieve
fNorm by successively subtracting multiples of the polynomials in G.

• The effect of this procedure is that there is a rather large set of monomials
containing x1 that can not appear in the cubic polynomials output at the end.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 6 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The monomial orders
A. Monomials containing x1 are largest: Split variable
Gauss eliminate monomials containing x1 from the sets F and G producing
〈Fx1 , Gx1〉 and 〈Fx1 , Gx1〉 = 〈F,G〉 ∩B[2, n].

B. Monomials of degree 3 are largest: Split deg 2/3
• 〈F ∪ LG〉 may contain more quadratic polynomials than just G.
• Produce a larger set of quadratic polynomials G(2) by Gaussian elimination on

degree 3 monomials in order to try to produce some polynomials of degree 2.

3-normal forms: Normalizing cubics with respect to quadratics
• Eliminate particular monomials containing x1 from F using G as basis.
• A polynomial f ∈ B is said to be in normal form fNorm with respect to G, if no

monomial in f is divisible by the leading term of any polynomial in G → Achieve
fNorm by successively subtracting multiples of the polynomials in G.

• The effect of this procedure is that there is a rather large set of monomials
containing x1 that can not appear in the cubic polynomials output at the end.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 6 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The monomial orders
A. Monomials containing x1 are largest: Split variable
Gauss eliminate monomials containing x1 from the sets F and G producing
〈Fx1 , Gx1〉 and 〈Fx1 , Gx1〉 = 〈F,G〉 ∩B[2, n].

B. Monomials of degree 3 are largest: Split deg 2/3
• 〈F ∪ LG〉 may contain more quadratic polynomials than just G.
• Produce a larger set of quadratic polynomials G(2) by Gaussian elimination on

degree 3 monomials in order to try to produce some polynomials of degree 2.

3-normal forms: Normalizing cubics with respect to quadratics
• Eliminate particular monomials containing x1 from F using G as basis.
• A polynomial f ∈ B is said to be in normal form fNorm with respect to G, if no

monomial in f is divisible by the leading term of any polynomial in G → Achieve
fNorm by successively subtracting multiples of the polynomials in G.

• The effect of this procedure is that there is a rather large set of monomials
containing x1 that can not appear in the cubic polynomials output at the end.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 6 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The monomial orders
A. Monomials containing x1 are largest: Split variable
Gauss eliminate monomials containing x1 from the sets F and G producing
〈Fx1 , Gx1〉 and 〈Fx1 , Gx1〉 = 〈F,G〉 ∩B[2, n].

B. Monomials of degree 3 are largest: Split deg 2/3
• 〈F ∪ LG〉 may contain more quadratic polynomials than just G.
• Produce a larger set of quadratic polynomials G(2) by Gaussian elimination on

degree 3 monomials in order to try to produce some polynomials of degree 2.

3-normal forms: Normalizing cubics with respect to quadratics
• Eliminate particular monomials containing x1 from F using G as basis.
• A polynomial f ∈ B is said to be in normal form fNorm with respect to G, if no

monomial in f is divisible by the leading term of any polynomial in G → Achieve
fNorm by successively subtracting multiples of the polynomials in G.

• The effect of this procedure is that there is a rather large set of monomials
containing x1 that can not appear in the cubic polynomials output at the end.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 6 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The monomial orders
A. Monomials containing x1 are largest: Split variable
Gauss eliminate monomials containing x1 from the sets F and G producing
〈Fx1 , Gx1〉 and 〈Fx1 , Gx1〉 = 〈F,G〉 ∩B[2, n].

B. Monomials of degree 3 are largest: Split deg 2/3
• 〈F ∪ LG〉 may contain more quadratic polynomials than just G.
• Produce a larger set of quadratic polynomials G(2) by Gaussian elimination on

degree 3 monomials in order to try to produce some polynomials of degree 2.

3-normal forms: Normalizing cubics with respect to quadratics
• Eliminate particular monomials containing x1 from F using G as basis.
• A polynomial f ∈ B is said to be in normal form fNorm with respect to G, if no

monomial in f is divisible by the leading term of any polynomial in G → Achieve
fNorm by successively subtracting multiples of the polynomials in G.

• The effect of this procedure is that there is a rather large set of monomials
containing x1 that can not appear in the cubic polynomials output at the end.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 6 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The monomial orders
A. Monomials containing x1 are largest: Split variable
Gauss eliminate monomials containing x1 from the sets F and G producing
〈Fx1 , Gx1〉 and 〈Fx1 , Gx1〉 = 〈F,G〉 ∩B[2, n].

B. Monomials of degree 3 are largest: Split deg 2/3
• 〈F ∪ LG〉 may contain more quadratic polynomials than just G.
• Produce a larger set of quadratic polynomials G(2) by Gaussian elimination on

degree 3 monomials in order to try to produce some polynomials of degree 2.

3-normal forms: Normalizing cubics with respect to quadratics
• Eliminate particular monomials containing x1 from F using G as basis.
• A polynomial f ∈ B is said to be in normal form fNorm with respect to G, if no

monomial in f is divisible by the leading term of any polynomial in G → Achieve
fNorm by successively subtracting multiples of the polynomials in G.

• The effect of this procedure is that there is a rather large set of monomials
containing x1 that can not appear in the cubic polynomials output at the end.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 6 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The monomial orders
A. Monomials containing x1 are largest: Split variable
Gauss eliminate monomials containing x1 from the sets F and G producing
〈Fx1 , Gx1〉 and 〈Fx1 , Gx1〉 = 〈F,G〉 ∩B[2, n].

B. Monomials of degree 3 are largest: Split deg 2/3
• 〈F ∪ LG〉 may contain more quadratic polynomials than just G.
• Produce a larger set of quadratic polynomials G(2) by Gaussian elimination on

degree 3 monomials in order to try to produce some polynomials of degree 2.

3-normal forms: Normalizing cubics with respect to quadratics
• Eliminate particular monomials containing x1 from F using G as basis.
• A polynomial f ∈ B is said to be in normal form fNorm with respect to G, if no

monomial in f is divisible by the leading term of any polynomial in G → Achieve
fNorm by successively subtracting multiples of the polynomials in G.

• The effect of this procedure is that there is a rather large set of monomials
containing x1 that can not appear in the cubic polynomials output at the end.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 6 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

What is the alternative to Gröbner bases?
• Resultants: Eliminate one variable from all monomials containing the targeted

variable at the time.
• Let f = a0x1 + a1 and g = b0x1 + b1 be two polynomials in B, where the aj and
bj are in B[2, n]. If f and g are quadratic, then a0 and b0 will be linear, a1 and
b1 will (in general) be quadratic.

• The 2× 2 Sylvester matrix of f and g with respect to x1

Syl(f, g, x1) =
(

a0 b0
a1 b1

)
• The resultant of f and g with respect to x1 is a polynomial in B[2, n]:

Res(f, g, x1) = det(Syl(f, g, x1)) = a0b1 + a1b0 = b0f + a0g. Also
Res(f, g, x1) ⊂ I ′ = (f, g) ∩B[2, n].

Good news
2× 2 determinants are easy to compute, and cubic polynomials can be handled by a
computer. Also the size of n we encounter in cryptanalysis of block ciphers are within
tolerances.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 7 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

What is the alternative to Gröbner bases?
• Resultants: Eliminate one variable from all monomials containing the targeted

variable at the time.
• Let f = a0x1 + a1 and g = b0x1 + b1 be two polynomials in B, where the aj and
bj are in B[2, n]. If f and g are quadratic, then a0 and b0 will be linear, a1 and
b1 will (in general) be quadratic.

• The 2× 2 Sylvester matrix of f and g with respect to x1

Syl(f, g, x1) =
(

a0 b0
a1 b1

)
• The resultant of f and g with respect to x1 is a polynomial in B[2, n]:

Res(f, g, x1) = det(Syl(f, g, x1)) = a0b1 + a1b0 = b0f + a0g. Also
Res(f, g, x1) ⊂ I ′ = (f, g) ∩B[2, n].

Good news
2× 2 determinants are easy to compute, and cubic polynomials can be handled by a
computer. Also the size of n we encounter in cryptanalysis of block ciphers are within
tolerances.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 7 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

What is the alternative to Gröbner bases?
• Resultants: Eliminate one variable from all monomials containing the targeted

variable at the time.
• Let f = a0x1 + a1 and g = b0x1 + b1 be two polynomials in B, where the aj and
bj are in B[2, n]. If f and g are quadratic, then a0 and b0 will be linear, a1 and
b1 will (in general) be quadratic.

• The 2× 2 Sylvester matrix of f and g with respect to x1

Syl(f, g, x1) =
(

a0 b0
a1 b1

)
• The resultant of f and g with respect to x1 is a polynomial in B[2, n]:

Res(f, g, x1) = det(Syl(f, g, x1)) = a0b1 + a1b0 = b0f + a0g. Also
Res(f, g, x1) ⊂ I ′ = (f, g) ∩B[2, n].

Good news
2× 2 determinants are easy to compute, and cubic polynomials can be handled by a
computer. Also the size of n we encounter in cryptanalysis of block ciphers are within
tolerances.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 7 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

What is the alternative to Gröbner bases?
• Resultants: Eliminate one variable from all monomials containing the targeted

variable at the time.
• Let f = a0x1 + a1 and g = b0x1 + b1 be two polynomials in B, where the aj and
bj are in B[2, n]. If f and g are quadratic, then a0 and b0 will be linear, a1 and
b1 will (in general) be quadratic.

• The 2× 2 Sylvester matrix of f and g with respect to x1

Syl(f, g, x1) =
(

a0 b0
a1 b1

)
• The resultant of f and g with respect to x1 is a polynomial in B[2, n]:

Res(f, g, x1) = det(Syl(f, g, x1)) = a0b1 + a1b0 = b0f + a0g. Also
Res(f, g, x1) ⊂ I ′ = (f, g) ∩B[2, n].

Good news
2× 2 determinants are easy to compute, and cubic polynomials can be handled by a
computer. Also the size of n we encounter in cryptanalysis of block ciphers are within
tolerances.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 7 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

What is the alternative to Gröbner bases?
• Resultants: Eliminate one variable from all monomials containing the targeted

variable at the time.
• Let f = a0x1 + a1 and g = b0x1 + b1 be two polynomials in B, where the aj and
bj are in B[2, n]. If f and g are quadratic, then a0 and b0 will be linear, a1 and
b1 will (in general) be quadratic.

• The 2× 2 Sylvester matrix of f and g with respect to x1

Syl(f, g, x1) =
(

a0 b0
a1 b1

)
• The resultant of f and g with respect to x1 is a polynomial in B[2, n]:

Res(f, g, x1) = det(Syl(f, g, x1)) = a0b1 + a1b0 = b0f + a0g. Also
Res(f, g, x1) ⊂ I ′ = (f, g) ∩B[2, n].

Good news
2× 2 determinants are easy to compute, and cubic polynomials can be handled by a
computer. Also the size of n we encounter in cryptanalysis of block ciphers are within
tolerances.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 7 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Coefficient constraints and Resultant ideals
For I(F) = (f1, . . . , fs) where each fi written as fi = aix1 + bi:

• Res2(F) = (Res(fi, fj ;x1)|1 ≤ i < j ≤ s).
• Co2(F) = (b1(a1 + 1), b2(a2 + 1), . . . , bs(as + 1)).

Theorem

Let F = {f1, . . . , fs} be a set of Boolean polynomials in B[1, n]. Then

I(F) ∩B[2, n] = Res2(F) + Co2(F).

Note: IF fi have degree d ↔ deg(Res2(F) + Co2(F)) = 2d− 1.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 8 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Coefficient constraints and Resultant ideals
For I(F) = (f1, . . . , fs) where each fi written as fi = aix1 + bi:

• Res2(F) = (Res(fi, fj ;x1)|1 ≤ i < j ≤ s).
• Co2(F) = (b1(a1 + 1), b2(a2 + 1), . . . , bs(as + 1)).

Theorem

Let F = {f1, . . . , fs} be a set of Boolean polynomials in B[1, n]. Then

I(F) ∩B[2, n] = Res2(F) + Co2(F).

Note: IF fi have degree d ↔ deg(Res2(F) + Co2(F)) = 2d− 1.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 8 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Coefficient constraints and Resultant ideals
For I(F) = (f1, . . . , fs) where each fi written as fi = aix1 + bi:

• Res2(F) = (Res(fi, fj ;x1)|1 ≤ i < j ≤ s).
• Co2(F) = (b1(a1 + 1), b2(a2 + 1), . . . , bs(as + 1)).

Theorem

Let F = {f1, . . . , fs} be a set of Boolean polynomials in B[1, n]. Then

I(F) ∩B[2, n] = Res2(F) + Co2(F).

Note: IF fi have degree d ↔ deg(Res2(F) + Co2(F)) = 2d− 1.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 8 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The LG-elim algorithm
• Replace F with F∪L ·G.
• Gauss eliminate w.r.t degree to produce F 2, F 3 from F .
• Split F 2 and F 3 into F 2

x1 , F
3
x1 , F

2
x1F

3
x1 by Gaussian elimination on monomials

containing x1.
• Return F 2

x1F
3
x1 .

• Repeat for Fj and Gj in smaller and smaller Boolean rings B[j, n].

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 9 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The LG-elim algorithm
• Replace F with F∪L ·G.
• Gauss eliminate w.r.t degree to produce F 2, F 3 from F .
• Split F 2 and F 3 into F 2

x1 , F
3
x1 , F

2
x1F

3
x1 by Gaussian elimination on monomials

containing x1.
• Return F 2

x1F
3
x1 .

• Repeat for Fj and Gj in smaller and smaller Boolean rings B[j, n].

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 9 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The LG-elim algorithm
• Replace F with F∪L ·G.
• Gauss eliminate w.r.t degree to produce F 2, F 3 from F .
• Split F 2 and F 3 into F 2

x1 , F
3
x1 , F

2
x1F

3
x1 by Gaussian elimination on monomials

containing x1.
• Return F 2

x1F
3
x1 .

• Repeat for Fj and Gj in smaller and smaller Boolean rings B[j, n].

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 9 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The LG-elim algorithm
• Replace F with F∪L ·G.
• Gauss eliminate w.r.t degree to produce F 2, F 3 from F .
• Split F 2 and F 3 into F 2

x1 , F
3
x1 , F

2
x1F

3
x1 by Gaussian elimination on monomials

containing x1.
• Return F 2

x1F
3
x1 .

• Repeat for Fj and Gj in smaller and smaller Boolean rings B[j, n].

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 9 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The LG-elim algorithm
• Replace F with F∪L ·G.
• Gauss eliminate w.r.t degree to produce F 2, F 3 from F .
• Split F 2 and F 3 into F 2

x1 , F
3
x1 , F

2
x1F

3
x1 by Gaussian elimination on monomials

containing x1.
• Return F 2

x1F
3
x1 .

• Repeat for Fj and Gj in smaller and smaller Boolean rings B[j, n].

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 9 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Main elimination algorithm: Eliminate
• Split G into Gx1 , Gx1 ⊂ B[2, n] by Gaussian elimination on monomials

containing x1

• If Gx1 or Gx1 changed in last iteration, then
• Replace F with (x1 + 1)Gx1 ∪ x1Gx1 ∪ F producing more cubic polynomials.
• Normalize F with respect to Gx1 to eliminate particular monomials containing x1.
• Produce more degree 3 relations from resultants and coefficient constraints w.r.t

x1 of Gx1 and add to F .
• Gauss eliminate w.r.t degree to produce F 2, F 3 from F .
• Split F 2 into F 2

x1 , F 2
x1

by Gaussian elimination on monomials containing x1.
• Gx1 ← Gx1 ∪ F 2

x1 , Gx1 changes if F 2
x1 6= ∅, causing new iteration

• Gx1 ← Gx1 ∪ F 2
x1

, Gx1 changes if F 2
x1
6= ∅, causing new iteration

• Split F 3 into F 3
x1 , F

3
x1 by Gaussian elimination on monomials containing x1 and

Return F 3
x1 , Gx1

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 10 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Main elimination algorithm: Eliminate
• Split G into Gx1 , Gx1 ⊂ B[2, n] by Gaussian elimination on monomials

containing x1

• If Gx1 or Gx1 changed in last iteration, then
• Replace F with (x1 + 1)Gx1 ∪ x1Gx1 ∪ F producing more cubic polynomials.
• Normalize F with respect to Gx1 to eliminate particular monomials containing x1.
• Produce more degree 3 relations from resultants and coefficient constraints w.r.t

x1 of Gx1 and add to F .
• Gauss eliminate w.r.t degree to produce F 2, F 3 from F .
• Split F 2 into F 2

x1 , F 2
x1

by Gaussian elimination on monomials containing x1.
• Gx1 ← Gx1 ∪ F 2

x1 , Gx1 changes if F 2
x1 6= ∅, causing new iteration

• Gx1 ← Gx1 ∪ F 2
x1

, Gx1 changes if F 2
x1
6= ∅, causing new iteration

• Split F 3 into F 3
x1 , F

3
x1 by Gaussian elimination on monomials containing x1 and

Return F 3
x1 , Gx1

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 10 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Main elimination algorithm: Eliminate
• Split G into Gx1 , Gx1 ⊂ B[2, n] by Gaussian elimination on monomials

containing x1

• If Gx1 or Gx1 changed in last iteration, then
• Replace F with (x1 + 1)Gx1 ∪ x1Gx1 ∪ F producing more cubic polynomials.
• Normalize F with respect to Gx1 to eliminate particular monomials containing x1.
• Produce more degree 3 relations from resultants and coefficient constraints w.r.t

x1 of Gx1 and add to F .
• Gauss eliminate w.r.t degree to produce F 2, F 3 from F .
• Split F 2 into F 2

x1 , F 2
x1

by Gaussian elimination on monomials containing x1.
• Gx1 ← Gx1 ∪ F 2

x1 , Gx1 changes if F 2
x1 6= ∅, causing new iteration

• Gx1 ← Gx1 ∪ F 2
x1

, Gx1 changes if F 2
x1
6= ∅, causing new iteration

• Split F 3 into F 3
x1 , F

3
x1 by Gaussian elimination on monomials containing x1 and

Return F 3
x1 , Gx1

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 10 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Main elimination algorithm: Eliminate
• Split G into Gx1 , Gx1 ⊂ B[2, n] by Gaussian elimination on monomials

containing x1

• If Gx1 or Gx1 changed in last iteration, then
• Replace F with (x1 + 1)Gx1 ∪ x1Gx1 ∪ F producing more cubic polynomials.
• Normalize F with respect to Gx1 to eliminate particular monomials containing x1.
• Produce more degree 3 relations from resultants and coefficient constraints w.r.t

x1 of Gx1 and add to F .
• Gauss eliminate w.r.t degree to produce F 2, F 3 from F .
• Split F 2 into F 2

x1 , F 2
x1

by Gaussian elimination on monomials containing x1.
• Gx1 ← Gx1 ∪ F 2

x1 , Gx1 changes if F 2
x1 6= ∅, causing new iteration

• Gx1 ← Gx1 ∪ F 2
x1

, Gx1 changes if F 2
x1
6= ∅, causing new iteration

• Split F 3 into F 3
x1 , F

3
x1 by Gaussian elimination on monomials containing x1 and

Return F 3
x1 , Gx1

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 10 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Main elimination algorithm: Eliminate
• Split G into Gx1 , Gx1 ⊂ B[2, n] by Gaussian elimination on monomials

containing x1

• If Gx1 or Gx1 changed in last iteration, then
• Replace F with (x1 + 1)Gx1 ∪ x1Gx1 ∪ F producing more cubic polynomials.
• Normalize F with respect to Gx1 to eliminate particular monomials containing x1.
• Produce more degree 3 relations from resultants and coefficient constraints w.r.t

x1 of Gx1 and add to F .
• Gauss eliminate w.r.t degree to produce F 2, F 3 from F .
• Split F 2 into F 2

x1 , F 2
x1

by Gaussian elimination on monomials containing x1.
• Gx1 ← Gx1 ∪ F 2

x1 , Gx1 changes if F 2
x1 6= ∅, causing new iteration

• Gx1 ← Gx1 ∪ F 2
x1

, Gx1 changes if F 2
x1
6= ∅, causing new iteration

• Split F 3 into F 3
x1 , F

3
x1 by Gaussian elimination on monomials containing x1 and

Return F 3
x1 , Gx1

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 10 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Main elimination algorithm: Eliminate
• Split G into Gx1 , Gx1 ⊂ B[2, n] by Gaussian elimination on monomials

containing x1

• If Gx1 or Gx1 changed in last iteration, then
• Replace F with (x1 + 1)Gx1 ∪ x1Gx1 ∪ F producing more cubic polynomials.
• Normalize F with respect to Gx1 to eliminate particular monomials containing x1.
• Produce more degree 3 relations from resultants and coefficient constraints w.r.t

x1 of Gx1 and add to F .
• Gauss eliminate w.r.t degree to produce F 2, F 3 from F .
• Split F 2 into F 2

x1 , F 2
x1

by Gaussian elimination on monomials containing x1.
• Gx1 ← Gx1 ∪ F 2

x1 , Gx1 changes if F 2
x1 6= ∅, causing new iteration

• Gx1 ← Gx1 ∪ F 2
x1

, Gx1 changes if F 2
x1
6= ∅, causing new iteration

• Split F 3 into F 3
x1 , F

3
x1 by Gaussian elimination on monomials containing x1 and

Return F 3
x1 , Gx1

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 10 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Main elimination algorithm: Eliminate
• Split G into Gx1 , Gx1 ⊂ B[2, n] by Gaussian elimination on monomials

containing x1

• If Gx1 or Gx1 changed in last iteration, then
• Replace F with (x1 + 1)Gx1 ∪ x1Gx1 ∪ F producing more cubic polynomials.
• Normalize F with respect to Gx1 to eliminate particular monomials containing x1.
• Produce more degree 3 relations from resultants and coefficient constraints w.r.t

x1 of Gx1 and add to F .
• Gauss eliminate w.r.t degree to produce F 2, F 3 from F .
• Split F 2 into F 2

x1 , F 2
x1

by Gaussian elimination on monomials containing x1.
• Gx1 ← Gx1 ∪ F 2

x1 , Gx1 changes if F 2
x1 6= ∅, causing new iteration

• Gx1 ← Gx1 ∪ F 2
x1

, Gx1 changes if F 2
x1
6= ∅, causing new iteration

• Split F 3 into F 3
x1 , F

3
x1 by Gaussian elimination on monomials containing x1 and

Return F 3
x1 , Gx1

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 10 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Main elimination algorithm: Eliminate
• Split G into Gx1 , Gx1 ⊂ B[2, n] by Gaussian elimination on monomials

containing x1

• If Gx1 or Gx1 changed in last iteration, then
• Replace F with (x1 + 1)Gx1 ∪ x1Gx1 ∪ F producing more cubic polynomials.
• Normalize F with respect to Gx1 to eliminate particular monomials containing x1.
• Produce more degree 3 relations from resultants and coefficient constraints w.r.t

x1 of Gx1 and add to F .
• Gauss eliminate w.r.t degree to produce F 2, F 3 from F .
• Split F 2 into F 2

x1 , F 2
x1

by Gaussian elimination on monomials containing x1.
• Gx1 ← Gx1 ∪ F 2

x1 , Gx1 changes if F 2
x1 6= ∅, causing new iteration

• Gx1 ← Gx1 ∪ F 2
x1

, Gx1 changes if F 2
x1
6= ∅, causing new iteration

• Split F 3 into F 3
x1 , F

3
x1 by Gaussian elimination on monomials containing x1 and

Return F 3
x1 , Gx1

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 10 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Main elimination algorithm: Eliminate
• Split G into Gx1 , Gx1 ⊂ B[2, n] by Gaussian elimination on monomials

containing x1

• If Gx1 or Gx1 changed in last iteration, then
• Replace F with (x1 + 1)Gx1 ∪ x1Gx1 ∪ F producing more cubic polynomials.
• Normalize F with respect to Gx1 to eliminate particular monomials containing x1.
• Produce more degree 3 relations from resultants and coefficient constraints w.r.t

x1 of Gx1 and add to F .
• Gauss eliminate w.r.t degree to produce F 2, F 3 from F .
• Split F 2 into F 2

x1 , F 2
x1

by Gaussian elimination on monomials containing x1.
• Gx1 ← Gx1 ∪ F 2

x1 , Gx1 changes if F 2
x1 6= ∅, causing new iteration

• Gx1 ← Gx1 ∪ F 2
x1

, Gx1 changes if F 2
x1
6= ∅, causing new iteration

• Split F 3 into F 3
x1 , F

3
x1 by Gaussian elimination on monomials containing x1 and

Return F 3
x1 , Gx1

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 10 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Main elimination algorithm: Eliminate
• Split G into Gx1 , Gx1 ⊂ B[2, n] by Gaussian elimination on monomials

containing x1

• If Gx1 or Gx1 changed in last iteration, then
• Replace F with (x1 + 1)Gx1 ∪ x1Gx1 ∪ F producing more cubic polynomials.
• Normalize F with respect to Gx1 to eliminate particular monomials containing x1.
• Produce more degree 3 relations from resultants and coefficient constraints w.r.t

x1 of Gx1 and add to F .
• Gauss eliminate w.r.t degree to produce F 2, F 3 from F .
• Split F 2 into F 2

x1 , F 2
x1

by Gaussian elimination on monomials containing x1.
• Gx1 ← Gx1 ∪ F 2

x1 , Gx1 changes if F 2
x1 6= ∅, causing new iteration

• Gx1 ← Gx1 ∪ F 2
x1

, Gx1 changes if F 2
x1
6= ∅, causing new iteration

• Split F 3 into F 3
x1 , F

3
x1 by Gaussian elimination on monomials containing x1 and

Return F 3
x1 , Gx1

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 10 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Main elimination algorithm: Eliminate
• Split G into Gx1 , Gx1 ⊂ B[2, n] by Gaussian elimination on monomials

containing x1

• If Gx1 or Gx1 changed in last iteration, then
• Replace F with (x1 + 1)Gx1 ∪ x1Gx1 ∪ F producing more cubic polynomials.
• Normalize F with respect to Gx1 to eliminate particular monomials containing x1.
• Produce more degree 3 relations from resultants and coefficient constraints w.r.t

x1 of Gx1 and add to F .
• Gauss eliminate w.r.t degree to produce F 2, F 3 from F .
• Split F 2 into F 2

x1 , F 2
x1

by Gaussian elimination on monomials containing x1.
• Gx1 ← Gx1 ∪ F 2

x1 , Gx1 changes if F 2
x1 6= ∅, causing new iteration

• Gx1 ← Gx1 ∪ F 2
x1

, Gx1 changes if F 2
x1
6= ∅, causing new iteration

• Split F 3 into F 3
x1 , F

3
x1 by Gaussian elimination on monomials containing x1 and

Return F 3
x1 , Gx1

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 10 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Remarks and Complexity
• In general we have 〈F ∪LG〉 ∩B[2, n] ⊆ 〈F 3

x1 ∪L2Gx1〉 even if we look for more
quadratic polynomials in the LG-algorithm.

•
(

n−1
≤3

)
and

(
n−1
≤2

)
is the tight upper bound on the number of monomials and

polynomials which can occur in F and G, respectively.
• Space complexity of the algorithm is storing O(n6) monomials.
• The time complexity is dominated by the linear algebra done in SplitDeg2/3 and

SplitVariable. In the worst case, we have input size O(n3) in both polynomials
and monomials, so the matrices constructed are of size O(n3)×O(n3). This
leads to O(n9) for the Gaussian reduction.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 11 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Remarks and Complexity
• In general we have 〈F ∪LG〉 ∩B[2, n] ⊆ 〈F 3

x1 ∪L2Gx1〉 even if we look for more
quadratic polynomials in the LG-algorithm.

•
(

n−1
≤3

)
and

(
n−1
≤2

)
is the tight upper bound on the number of monomials and

polynomials which can occur in F and G, respectively.
• Space complexity of the algorithm is storing O(n6) monomials.
• The time complexity is dominated by the linear algebra done in SplitDeg2/3 and

SplitVariable. In the worst case, we have input size O(n3) in both polynomials
and monomials, so the matrices constructed are of size O(n3)×O(n3). This
leads to O(n9) for the Gaussian reduction.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 11 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Remarks and Complexity
• In general we have 〈F ∪LG〉 ∩B[2, n] ⊆ 〈F 3

x1 ∪L2Gx1〉 even if we look for more
quadratic polynomials in the LG-algorithm.

•
(

n−1
≤3

)
and

(
n−1
≤2

)
is the tight upper bound on the number of monomials and

polynomials which can occur in F and G, respectively.
• Space complexity of the algorithm is storing O(n6) monomials.
• The time complexity is dominated by the linear algebra done in SplitDeg2/3 and

SplitVariable. In the worst case, we have input size O(n3) in both polynomials
and monomials, so the matrices constructed are of size O(n3)×O(n3). This
leads to O(n9) for the Gaussian reduction.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 11 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Remarks and Complexity
• In general we have 〈F ∪LG〉 ∩B[2, n] ⊆ 〈F 3

x1 ∪L2Gx1〉 even if we look for more
quadratic polynomials in the LG-algorithm.

•
(

n−1
≤3

)
and

(
n−1
≤2

)
is the tight upper bound on the number of monomials and

polynomials which can occur in F and G, respectively.
• Space complexity of the algorithm is storing O(n6) monomials.
• The time complexity is dominated by the linear algebra done in SplitDeg2/3 and

SplitVariable. In the worst case, we have input size O(n3) in both polynomials
and monomials, so the matrices constructed are of size O(n3)×O(n3). This
leads to O(n9) for the Gaussian reduction.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 11 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Remarks and Complexity
• In general we have 〈F ∪LG〉 ∩B[2, n] ⊆ 〈F 3

x1 ∪L2Gx1〉 even if we look for more
quadratic polynomials in the LG-algorithm.

•
(

n−1
≤3

)
and

(
n−1
≤2

)
is the tight upper bound on the number of monomials and

polynomials which can occur in F and G, respectively.
• Space complexity of the algorithm is storing O(n6) monomials.
• The time complexity is dominated by the linear algebra done in SplitDeg2/3 and

SplitVariable. In the worst case, we have input size O(n3) in both polynomials
and monomials, so the matrices constructed are of size O(n3)×O(n3). This
leads to O(n9) for the Gaussian reduction.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 11 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The (Reduced) LowMC cipher
• Uses a 3× 3 S-box → 14 quadratic polynomials describe S-box → S-boxes do

not cover the whole state → part of the cipher block is not affected by the S-box
layer.

• Cipher parameters used: Block size: 24 bits, Key size: 32 bits, 1 S-box per
round, 12/13 rounds.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 12 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The (Reduced) LowMC cipher
• Uses a 3× 3 S-box → 14 quadratic polynomials describe S-box → S-boxes do

not cover the whole state → part of the cipher block is not affected by the S-box
layer.

• Cipher parameters used: Block size: 24 bits, Key size: 32 bits, 1 S-box per
round, 12/13 rounds.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 12 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The (Reduced) LowMC cipher
• Uses a 3× 3 S-box → 14 quadratic polynomials describe S-box → S-boxes do

not cover the whole state → part of the cipher block is not affected by the S-box
layer.

• Cipher parameters used: Block size: 24 bits, Key size: 32 bits, 1 S-box per
round, 12/13 rounds.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 12 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The (Reduced) LowMC cipher
• Uses a 3× 3 S-box → 14 quadratic polynomials describe S-box → S-boxes do

not cover the whole state → part of the cipher block is not affected by the S-box
layer.

• Cipher parameters used: Block size: 24 bits, Key size: 32 bits, 1 S-box per
round, 12/13 rounds.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 12 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Experimental results
• Eliminate all variables xi for i ≥ 32 → Find some polynomials of degree at most

3, only in x0, . . . , x31.
• 12 rounds: 44 variables, F = ∅, |G| = 168.

• LG− elim: Produces 1-2 cubic polynomial(s) only in key variables. Memory
requirement: Store 7560 polynomials from G · L.

• eliminate: Produce same polynomials as LG− elim. Size of F never above 2000
polynomials ↔ eliminate has less space complexity than LG− elim. Running
time: Roughly the same.

• 15 different systems using different p/c-pairs → 20 cubic polynomials in only key
bits → Seems that we can produce many independent polynomials from different
p/c-pairs.

Other results
• Checking for linear dependencies among 20 cubic polynomials we produced five

linear polynomials in only key bits ↔ Need much fewer polynomials than
expected to find the values of x0, . . . , x31.

• 13 rounds: 47 variables, F = ∅, |G| = 182. For the 13-round systems we tried,
neither LG− elim or eliminate found any cubic polynomials in only key
variables → Only up to 12 rounds may be attacked using techniques.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 13 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Experimental results
• Eliminate all variables xi for i ≥ 32 → Find some polynomials of degree at most

3, only in x0, . . . , x31.
• 12 rounds: 44 variables, F = ∅, |G| = 168.

• LG− elim: Produces 1-2 cubic polynomial(s) only in key variables. Memory
requirement: Store 7560 polynomials from G · L.

• eliminate: Produce same polynomials as LG− elim. Size of F never above 2000
polynomials ↔ eliminate has less space complexity than LG− elim. Running
time: Roughly the same.

• 15 different systems using different p/c-pairs → 20 cubic polynomials in only key
bits → Seems that we can produce many independent polynomials from different
p/c-pairs.

Other results
• Checking for linear dependencies among 20 cubic polynomials we produced five

linear polynomials in only key bits ↔ Need much fewer polynomials than
expected to find the values of x0, . . . , x31.

• 13 rounds: 47 variables, F = ∅, |G| = 182. For the 13-round systems we tried,
neither LG− elim or eliminate found any cubic polynomials in only key
variables → Only up to 12 rounds may be attacked using techniques.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 13 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Experimental results
• Eliminate all variables xi for i ≥ 32 → Find some polynomials of degree at most

3, only in x0, . . . , x31.
• 12 rounds: 44 variables, F = ∅, |G| = 168.

• LG− elim: Produces 1-2 cubic polynomial(s) only in key variables. Memory
requirement: Store 7560 polynomials from G · L.

• eliminate: Produce same polynomials as LG− elim. Size of F never above 2000
polynomials ↔ eliminate has less space complexity than LG− elim. Running
time: Roughly the same.

• 15 different systems using different p/c-pairs → 20 cubic polynomials in only key
bits → Seems that we can produce many independent polynomials from different
p/c-pairs.

Other results
• Checking for linear dependencies among 20 cubic polynomials we produced five

linear polynomials in only key bits ↔ Need much fewer polynomials than
expected to find the values of x0, . . . , x31.

• 13 rounds: 47 variables, F = ∅, |G| = 182. For the 13-round systems we tried,
neither LG− elim or eliminate found any cubic polynomials in only key
variables → Only up to 12 rounds may be attacked using techniques.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 13 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Experimental results
• Eliminate all variables xi for i ≥ 32 → Find some polynomials of degree at most

3, only in x0, . . . , x31.
• 12 rounds: 44 variables, F = ∅, |G| = 168.

• LG− elim: Produces 1-2 cubic polynomial(s) only in key variables. Memory
requirement: Store 7560 polynomials from G · L.

• eliminate: Produce same polynomials as LG− elim. Size of F never above 2000
polynomials ↔ eliminate has less space complexity than LG− elim. Running
time: Roughly the same.

• 15 different systems using different p/c-pairs → 20 cubic polynomials in only key
bits → Seems that we can produce many independent polynomials from different
p/c-pairs.

Other results
• Checking for linear dependencies among 20 cubic polynomials we produced five

linear polynomials in only key bits ↔ Need much fewer polynomials than
expected to find the values of x0, . . . , x31.

• 13 rounds: 47 variables, F = ∅, |G| = 182. For the 13-round systems we tried,
neither LG− elim or eliminate found any cubic polynomials in only key
variables → Only up to 12 rounds may be attacked using techniques.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 13 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Experimental results
• Eliminate all variables xi for i ≥ 32 → Find some polynomials of degree at most

3, only in x0, . . . , x31.
• 12 rounds: 44 variables, F = ∅, |G| = 168.

• LG− elim: Produces 1-2 cubic polynomial(s) only in key variables. Memory
requirement: Store 7560 polynomials from G · L.

• eliminate: Produce same polynomials as LG− elim. Size of F never above 2000
polynomials ↔ eliminate has less space complexity than LG− elim. Running
time: Roughly the same.

• 15 different systems using different p/c-pairs → 20 cubic polynomials in only key
bits → Seems that we can produce many independent polynomials from different
p/c-pairs.

Other results
• Checking for linear dependencies among 20 cubic polynomials we produced five

linear polynomials in only key bits ↔ Need much fewer polynomials than
expected to find the values of x0, . . . , x31.

• 13 rounds: 47 variables, F = ∅, |G| = 182. For the 13-round systems we tried,
neither LG− elim or eliminate found any cubic polynomials in only key
variables → Only up to 12 rounds may be attacked using techniques.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 13 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Experimental results
• Eliminate all variables xi for i ≥ 32 → Find some polynomials of degree at most

3, only in x0, . . . , x31.
• 12 rounds: 44 variables, F = ∅, |G| = 168.

• LG− elim: Produces 1-2 cubic polynomial(s) only in key variables. Memory
requirement: Store 7560 polynomials from G · L.

• eliminate: Produce same polynomials as LG− elim. Size of F never above 2000
polynomials ↔ eliminate has less space complexity than LG− elim. Running
time: Roughly the same.

• 15 different systems using different p/c-pairs → 20 cubic polynomials in only key
bits → Seems that we can produce many independent polynomials from different
p/c-pairs.

Other results
• Checking for linear dependencies among 20 cubic polynomials we produced five

linear polynomials in only key bits ↔ Need much fewer polynomials than
expected to find the values of x0, . . . , x31.

• 13 rounds: 47 variables, F = ∅, |G| = 182. For the 13-round systems we tried,
neither LG− elim or eliminate found any cubic polynomials in only key
variables → Only up to 12 rounds may be attacked using techniques.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 13 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Experimental results
• Eliminate all variables xi for i ≥ 32 → Find some polynomials of degree at most

3, only in x0, . . . , x31.
• 12 rounds: 44 variables, F = ∅, |G| = 168.

• LG− elim: Produces 1-2 cubic polynomial(s) only in key variables. Memory
requirement: Store 7560 polynomials from G · L.

• eliminate: Produce same polynomials as LG− elim. Size of F never above 2000
polynomials ↔ eliminate has less space complexity than LG− elim. Running
time: Roughly the same.

• 15 different systems using different p/c-pairs → 20 cubic polynomials in only key
bits → Seems that we can produce many independent polynomials from different
p/c-pairs.

Other results
• Checking for linear dependencies among 20 cubic polynomials we produced five

linear polynomials in only key bits ↔ Need much fewer polynomials than
expected to find the values of x0, . . . , x31.

• 13 rounds: 47 variables, F = ∅, |G| = 182. For the 13-round systems we tried,
neither LG− elim or eliminate found any cubic polynomials in only key
variables → Only up to 12 rounds may be attacked using techniques.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 13 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The toy cipher
• Uses four 4× 4 S-boxes (the same S-box as used in PRINCE) → Use same key in

every round.
• Cipher parameters used: Block size: 16-bit, key size: 16-bit → Used a 4-round

version of Cipher.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 14 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The toy cipher
• Uses four 4× 4 S-boxes (the same S-box as used in PRINCE) → Use same key in

every round.
• Cipher parameters used: Block size: 16-bit, key size: 16-bit → Used a 4-round

version of Cipher.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 14 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The toy cipher
• Uses four 4× 4 S-boxes (the same S-box as used in PRINCE) → Use same key in

every round.
• Cipher parameters used: Block size: 16-bit, key size: 16-bit → Used a 4-round

version of Cipher.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 14 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Experimental results
• Eliminate all non-key variables x16, . . . , x63 from the system → Find some

polynomials of degree at most 3 only in x0, . . . , x15.
• 4 rounds: 64 variables, F = ∅, |G| = 336

• None of LG− elim or eliminate were able to find any cubic polynomial in only
key variables.

.

Information loss
• Running LG− elim/eliminate → Throw away polynomials giving constraints on

the solution space Introduce false solutions.
• F = ∅ and G = ∅ → all solutions are valid → ”Lost all information about the

possible solutions to the original equation system”.
• Measure how fast the information about the solutions we seek disappear for the

toy cipher.
• With only a 16-bit key it is possible to do exhaustive search → Check which key

values that fit in any of the equation systems we get after eliminating some
variables.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 15 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Experimental results
• Eliminate all non-key variables x16, . . . , x63 from the system → Find some

polynomials of degree at most 3 only in x0, . . . , x15.
• 4 rounds: 64 variables, F = ∅, |G| = 336

• None of LG− elim or eliminate were able to find any cubic polynomial in only
key variables.

.

Information loss
• Running LG− elim/eliminate → Throw away polynomials giving constraints on

the solution space Introduce false solutions.
• F = ∅ and G = ∅ → all solutions are valid → ”Lost all information about the

possible solutions to the original equation system”.
• Measure how fast the information about the solutions we seek disappear for the

toy cipher.
• With only a 16-bit key it is possible to do exhaustive search → Check which key

values that fit in any of the equation systems we get after eliminating some
variables.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 15 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Experimental results
• Eliminate all non-key variables x16, . . . , x63 from the system → Find some

polynomials of degree at most 3 only in x0, . . . , x15.
• 4 rounds: 64 variables, F = ∅, |G| = 336

• None of LG− elim or eliminate were able to find any cubic polynomial in only
key variables.

.

Information loss
• Running LG− elim/eliminate → Throw away polynomials giving constraints on

the solution space Introduce false solutions.
• F = ∅ and G = ∅ → all solutions are valid → ”Lost all information about the

possible solutions to the original equation system”.
• Measure how fast the information about the solutions we seek disappear for the

toy cipher.
• With only a 16-bit key it is possible to do exhaustive search → Check which key

values that fit in any of the equation systems we get after eliminating some
variables.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 15 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Experimental results
• Eliminate all non-key variables x16, . . . , x63 from the system → Find some

polynomials of degree at most 3 only in x0, . . . , x15.
• 4 rounds: 64 variables, F = ∅, |G| = 336

• None of LG− elim or eliminate were able to find any cubic polynomial in only
key variables.

.

Information loss
• Running LG− elim/eliminate → Throw away polynomials giving constraints on

the solution space Introduce false solutions.
• F = ∅ and G = ∅ → all solutions are valid → ”Lost all information about the

possible solutions to the original equation system”.
• Measure how fast the information about the solutions we seek disappear for the

toy cipher.
• With only a 16-bit key it is possible to do exhaustive search → Check which key

values that fit in any of the equation systems we get after eliminating some
variables.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 15 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Experimental results
• Eliminate all non-key variables x16, . . . , x63 from the system → Find some

polynomials of degree at most 3 only in x0, . . . , x15.
• 4 rounds: 64 variables, F = ∅, |G| = 336

• None of LG− elim or eliminate were able to find any cubic polynomial in only
key variables.

.

Information loss
• Running LG− elim/eliminate → Throw away polynomials giving constraints on

the solution space Introduce false solutions.
• F = ∅ and G = ∅ → all solutions are valid → ”Lost all information about the

possible solutions to the original equation system”.
• Measure how fast the information about the solutions we seek disappear for the

toy cipher.
• With only a 16-bit key it is possible to do exhaustive search → Check which key

values that fit in any of the equation systems we get after eliminating some
variables.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 15 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Experimental results
• Eliminate all non-key variables x16, . . . , x63 from the system → Find some

polynomials of degree at most 3 only in x0, . . . , x15.
• 4 rounds: 64 variables, F = ∅, |G| = 336

• None of LG− elim or eliminate were able to find any cubic polynomial in only
key variables.

.

Information loss
• Running LG− elim/eliminate → Throw away polynomials giving constraints on

the solution space Introduce false solutions.
• F = ∅ and G = ∅ → all solutions are valid → ”Lost all information about the

possible solutions to the original equation system”.
• Measure how fast the information about the solutions we seek disappear for the

toy cipher.
• With only a 16-bit key it is possible to do exhaustive search → Check which key

values that fit in any of the equation systems we get after eliminating some
variables.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 15 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Experimental results
• Eliminate all non-key variables x16, . . . , x63 from the system → Find some

polynomials of degree at most 3 only in x0, . . . , x15.
• 4 rounds: 64 variables, F = ∅, |G| = 336

• None of LG− elim or eliminate were able to find any cubic polynomial in only
key variables.

.

Information loss
• Running LG− elim/eliminate → Throw away polynomials giving constraints on

the solution space Introduce false solutions.
• F = ∅ and G = ∅ → all solutions are valid → ”Lost all information about the

possible solutions to the original equation system”.
• Measure how fast the information about the solutions we seek disappear for the

toy cipher.
• With only a 16-bit key it is possible to do exhaustive search → Check which key

values that fit in any of the equation systems we get after eliminating some
variables.

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 15 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The information loss experiment
• Eliminate variables distributed evenly throughout the system → Check how many

keys fits in the given system after each elimination → Gives information on how
much information the system has about the unknown secret key.

• The amount of information a system S has about the key:
i(S) = 16− log2(# of keys that fit in S). Sv is the system after eliminating v
variables.

• For the plaintext/ciphertext pair we used there were three keys that fit in the
initial system ↔ i(S0) ≈ 14.42.

• What is the rate of information loss during elimination?

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 16 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The information loss experiment
• Eliminate variables distributed evenly throughout the system → Check how many

keys fits in the given system after each elimination → Gives information on how
much information the system has about the unknown secret key.

• The amount of information a system S has about the key:
i(S) = 16− log2(# of keys that fit in S). Sv is the system after eliminating v
variables.

• For the plaintext/ciphertext pair we used there were three keys that fit in the
initial system ↔ i(S0) ≈ 14.42.

• What is the rate of information loss during elimination?

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 16 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The information loss experiment
• Eliminate variables distributed evenly throughout the system → Check how many

keys fits in the given system after each elimination → Gives information on how
much information the system has about the unknown secret key.

• The amount of information a system S has about the key:
i(S) = 16− log2(# of keys that fit in S). Sv is the system after eliminating v
variables.

• For the plaintext/ciphertext pair we used there were three keys that fit in the
initial system ↔ i(S0) ≈ 14.42.

• What is the rate of information loss during elimination?

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 16 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The information loss experiment
• Eliminate variables distributed evenly throughout the system → Check how many

keys fits in the given system after each elimination → Gives information on how
much information the system has about the unknown secret key.

• The amount of information a system S has about the key:
i(S) = 16− log2(# of keys that fit in S). Sv is the system after eliminating v
variables.

• For the plaintext/ciphertext pair we used there were three keys that fit in the
initial system ↔ i(S0) ≈ 14.42.

• What is the rate of information loss during elimination?

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 16 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

The information loss experiment
• Eliminate variables distributed evenly throughout the system → Check how many

keys fits in the given system after each elimination → Gives information on how
much information the system has about the unknown secret key.

• The amount of information a system S has about the key:
i(S) = 16− log2(# of keys that fit in S). Sv is the system after eliminating v
variables.

• For the plaintext/ciphertext pair we used there were three keys that fit in the
initial system ↔ i(S0) ≈ 14.42.

• What is the rate of information loss during elimination?

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 16 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

Figure: i(Sv) for 0 ≤ v ≤ 31

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 17 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

What this tells us
• For the Toy cipher it is possible to construct a cubic equation system, with the

same information on the key, with only k + (n− k)/2 variables where k is the
number of key bits → Trade-off between degree and number of variables needed
to describe a cipher.

• I.e: For the toy cipher, increasing the degree by one allows to cut the number of
non-key variables in half to describe the same cipher.

Open questions
• Attacks on other ciphers? When does the algorithm work and not?
• Generalizations of elimination algorithm?

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 18 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

What this tells us
• For the Toy cipher it is possible to construct a cubic equation system, with the

same information on the key, with only k + (n− k)/2 variables where k is the
number of key bits → Trade-off between degree and number of variables needed
to describe a cipher.

• I.e: For the toy cipher, increasing the degree by one allows to cut the number of
non-key variables in half to describe the same cipher.

Open questions
• Attacks on other ciphers? When does the algorithm work and not?
• Generalizations of elimination algorithm?

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 18 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

What this tells us
• For the Toy cipher it is possible to construct a cubic equation system, with the

same information on the key, with only k + (n− k)/2 variables where k is the
number of key bits → Trade-off between degree and number of variables needed
to describe a cipher.

• I.e: For the toy cipher, increasing the degree by one allows to cut the number of
non-key variables in half to describe the same cipher.

Open questions
• Attacks on other ciphers? When does the algorithm work and not?
• Generalizations of elimination algorithm?

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 18 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

What this tells us
• For the Toy cipher it is possible to construct a cubic equation system, with the

same information on the key, with only k + (n− k)/2 variables where k is the
number of key bits → Trade-off between degree and number of variables needed
to describe a cipher.

• I.e: For the toy cipher, increasing the degree by one allows to cut the number of
non-key variables in half to describe the same cipher.

Open questions
• Attacks on other ciphers? When does the algorithm work and not?
• Generalizations of elimination algorithm?

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 18 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

What this tells us
• For the Toy cipher it is possible to construct a cubic equation system, with the

same information on the key, with only k + (n− k)/2 variables where k is the
number of key bits → Trade-off between degree and number of variables needed
to describe a cipher.

• I.e: For the toy cipher, increasing the degree by one allows to cut the number of
non-key variables in half to describe the same cipher.

Open questions
• Attacks on other ciphers? When does the algorithm work and not?
• Generalizations of elimination algorithm?

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 18 / 18

Introduction and motivation Elimination techniques Elimination algorithms Experimental results

What this tells us
• For the Toy cipher it is possible to construct a cubic equation system, with the

same information on the key, with only k + (n− k)/2 variables where k is the
number of key bits → Trade-off between degree and number of variables needed
to describe a cipher.

• I.e: For the toy cipher, increasing the degree by one allows to cut the number of
non-key variables in half to describe the same cipher.

Open questions
• Attacks on other ciphers? When does the algorithm work and not?
• Generalizations of elimination algorithm?

Eliminating variables in Boolean equation systems | B. Greve, H.Raddum, G.Fløystad, Ø.Ytrehus 18 / 18

	Introduction and motivation
	Introduction and motivation
	Why elimination in cryptography?
	Elimination in cryptography

	Elimination techniques
	The two different monomial orders
	Normal forms: Normalizing cubics with respect to quadratics
	Resultants and coefficient constraints

	Elimination algorithms
	The LG-algorithm
	Main elimination algorithm

	Experimental results
	Reduced LowMC cipher
	Experimental results

